DOI QR코드

DOI QR Code

Current scientific technology and future challenges for personalized nutrition service

맞춤형 영양서비스를 위한 과학기술과 해결과제

  • Kim, Kyeong Jin (Department of Nano Bio Engineering, Seoul National University of Science and Technology) ;
  • Lee, Yeonkyung (Amway Korea Ltd.) ;
  • Kim, Ji Yeon (Department of Nano Bio Engineering, Seoul National University of Science and Technology)
  • 김경진 (서울과학기술대학교 나노바이오융합공학과) ;
  • 이연경 (한국암웨이(주)) ;
  • 김지연 (서울과학기술대학교 나노바이오융합공학과)
  • Received : 2021.08.11
  • Accepted : 2021.09.06
  • Published : 2021.09.30

Abstract

Conventional nutrition services involve producer-oriented approaches without considering the differences in the characteristics and circumstances of each individual, whereas personalized nutrition services are consumer-oriented concepts that provide products and services for maintaining optimal health conditions based on the genetic, physiological, and metabolic characteristics of individuals, with these products based on balanced nutrition and healthy living. Currently, methods for evaluating dietary habits, monitoring dietary behaviors, deep phenotyping, and metabotyping via microbiota profiling, as well as methods for predicting big data by using machine learning, have been previously studied in Korea and abroad. With the development of medical technology and the improvement of hygiene, the demand for personalized nutrition and health services for healthier, happier, and more satisfying lives is rapidly increasing. Therefore, based on scientific technologies, attempts are needed to advance these services into global personalized markets and to boost the global competitiveness of countries and companies.

Keywords

References

  1. Ahmad S, Rukh G, Varga TV, Ali A, Kurbasic A, Shungin D, Ericson U, Koivula RW, Chu AY, Rose LM. Gene× physical activity interactions in obesity: combined analysis of 111,421 individuals of European ancestry. PLoS genetics 9: e1003607 (2013) https://doi.org/10.1371/journal.pgen.1003607
  2. Amin AM. The metabolic signatures of cardiometabolic diseases: Does the shared metabotype offer new therapeutic targets? Lifestyle Medicine 2: e25 (2021)
  3. Archundia Herrera MC, Chan CB. Narrative Review of New Methods for Assessing Food and Energy Intake. Nutrients 10 (2018)
  4. Arsenault BJ, Lemieux I, Despres J-P, Wareham NJ, Kastelein JJ, Khaw K-T, Boekholdt SM. The hypertriglyceridemic-waist phenotype and the risk of coronary artery disease: results from the EPIC-Norfolk prospective population study. Cmaj 182: 1427-1432 (2010) https://doi.org/10.1503/cmaj.091276
  5. Asher G, Sassone-Corsi P. Time for food: the intimate interplay between nutrition, metabolism, and the circadian clock. Cell 161: 84-92 (2015) https://doi.org/10.1016/j.cell.2015.03.015
  6. Atkinson G, Batterham AM. True and false interindividual differences in the physiological response to an intervention. Exp. Physiol. 100: 577-88 (2015) https://doi.org/10.1113/EP085070
  7. Berry SE, Valdes AM, Drew DA, Asnicar F, Mazidi M, Wolf J, Capdevila J, Hadjigeorgiou G, Davies R, Al Khatib H, Bonnett C, Ganesh S, Bakker E, Hart D, Mangino M, Merino J, Linenberg I, Wyatt P, Ordovas JM, Gardner CD, Delahanty LM, Chan AT, Segata N, Franks PW, Spector TD. Human postprandial responses to food and potential for precision nutrition. Nat. Med. 26: 964-973 (2020) https://doi.org/10.1038/s41591-020-0934-0
  8. Betts J, Gonzalez J. Wiley Online Library (2016).
  9. Bouchard C, Blair SN, Church TS, Earnest CP, Hagberg JM, Hakkinen K, Jenkins NT, Karavirta L, Kraus WE, Leon AS, Rao DC, Sarzynski MA, Skinner JS, Slentz CA, Rankinen T. Adverse metabolic response to regular exercise: is it a rare or common occurrence? PLoS One 7: e37887 (2012) https://doi.org/10.1371/journal.pone.0037887
  10. Bouchard L, Rabasa-Lhoret R, Faraj M, Lavoie M-E, Mill J, Perusse L, Vohl M-C. Differential epigenomic and transcriptomic responses in subcutaneous adipose tissue between low and high responders to caloric restriction. Am. J. Clin. Nutr. 91: 309-320 (2009) https://doi.org/10.3945/ajcn.2009.28085
  11. Bush CL, Blumberg JB, El-Sohemy A, Minich DM, Ordovas JM, Reed DG, Behm VAY. Toward the definition of personalized nutrition: a proposal by the American Nutrition Association. ACN. 39: 5-15 (2020)
  12. Celis-Morales C, Marsaux CF, Livingstone KM, Navas-Carretero S, San-Cristobal R, O'donovan CB, Forster H, Woolhead C, Fallaize R, Macready AL. Physical activity attenuates the effect of the FTO genotype on obesity traits in European adults: the Food4Me study. Obesity 24: 962-969 (2016) https://doi.org/10.1002/oby.21422
  13. Connaugton R, McMorrow A, Healy M, McGillicuddy F, Lithander F, Roche H. An anti-inflammatory nutritional intervention selectively improves insulin sensitivity in overweight and obese adolescents wherein baseline metabotype predicts response. Proc. Nutr. Soc. 73 (2014)
  14. Corella D, Arregui M, Coltell O, Portoles O, Guillem-Saiz P, Carrasco P, Sorli JV, Ortega-Azorin C, Gonzalez JI, Ordovas JM. Association of the LCT-13910C> T polymorphism with obesity and its modulation by dairy products in a Mediterranean population. Obesity 19: 1707-1714 (2011) https://doi.org/10.1038/oby.2010.320
  15. Dashti HS, Smith CE, Lee YC, Parnell LD, Lai CQ, Arnett DK, Ordovas JM, Garaulet M. CRY1 circadian gene variant interacts with carbohydrate intake for insulin resistance in two independent populations: Mediterranean and North American. Chronobiol. Int. 31: 660-7 (2014) https://doi.org/10.3109/07420528.2014.886587
  16. de Lannoy L, Clarke J, Stotz PJ, Ross R. Effects of intensity and amount of exercise on measures of insulin and glucose: Analysis of inter-individual variability. PloS one 12: e0177095 (2017) https://doi.org/10.1371/journal.pone.0177095
  17. de Toro-Martin J, Arsenault BJ, Despres JP, Vohl MC. Precision Nutrition: A Review of Personalized Nutritional Approaches for the Prevention and Management of Metabolic Syndrome. Nutrients 9 (2017)
  18. Dong Y, Hoover A, Scisco J, Muth E. A new method for measuring meal intake in humans via automated wrist motion tracking. Appl. Psychophysiol Biofeedback 37: 205-15 (2012) https://doi.org/10.1007/s10484-012-9194-1
  19. Famodu OA, Cuff CF, Cockburn A, Downes MT, Murray PJ, McFadden JW, Colby SE, Morrell JS, Olfert IM, Olfert MD. Impact of Free-Living Nutrition Intervention on Microbiome in College Students at Risk for Disease: FRUVEDomic Pilot Study. FASEB J. 30: 146.7-146.7 (2016)
  20. Ferguson LR, De Caterina R, Gorman U, Allayee H, Kohlmeier M, Prasad C, Choi MS, Curi R, de Luis DA, Gil A, Kang JX, Martin RL, Milagro FI, Nicoletti CF, Nonino CB, Ordovas JM, Parslow VR, Portillo MP, Santos JL, Serhan CN, Simopoulos AP, Velazquez-Arellano A, Zulet MA, Martinez JA. Guide and Position of the International Society of Nutrigenetics/Nutrigenomics on Personalised Nutrition: Part 1 - Fields of Precision Nutrition. J. Nutrigenet Nutrigenomics 9: 12-27 (2016) https://doi.org/10.1159/000445350
  21. Fontana JM, Farooq M, Sazonov E. Automatic ingestion monitor: a novel wearable device for monitoring of ingestive behavior. IEEE. Trans. Biomed. Eng. 61: 1772-1779 (2014) https://doi.org/10.1109/TBME.2014.2306773
  22. Garaulet M, Corbalan-Tutau MD, Madrid JA, Baraza JC, Parnell LD, Lee YC, Ordovas JM. PERIOD2 variants are associated with abdominal obesity, psycho-behavioral factors, and attrition in the dietary treatment of obesity. J. Am. Diet Assoc. 110: 917-21 (2010) https://doi.org/10.1016/j.jada.2010.03.017
  23. Garaulet M, Vera B, Bonnet-Rubio G, Gomez-Abellan P, Lee YC, Ordovas JM. Lunch eating predicts weight-loss effectiveness in carriers of the common allele at PERILIPIN1: the ONTIME (Obesity, Nutrigenetics, Timing, Mediterranean) study. Am. J. Clin. Nutr. 104: 1160-1166 (2016) https://doi.org/10.3945/ajcn.116.134528
  24. Garcia-Perez I, Posma JM, Gibson R, Chambers ES, Hansen TH, Vestergaard H, Hansen T, Beckmann M, Pedersen O, Elliott P. Objective assessment of dietary patterns by use of metabolic phenotyping: a randomised, controlled, crossover trial. Lancet Diabetes Endocrinol. 5: 184-195 (2017) https://doi.org/10.1016/S2213-8587(16)30419-3
  25. Gibney MJ, Walsh MC. The future direction of personalised nutrition: my diet, my phenotype, my genes. Proc. Nutr. Soc. 72: 219-225 (2013) https://doi.org/10.1017/S0029665112003436
  26. Gibson RS, Charrondiere UR, Bell W. Measurement Errors in Dietary Assessment Using Self-Reported 24-Hour Recalls in Low-Income Countries and Strategies for Their Prevention. Adv. Nutr. 8: 980-991 (2017) https://doi.org/10.3945/an.117.016980
  27. Gomez-Delgado F, Garcia-Rios A, Alcala-Diaz JF, Rangel-Zuniga O, Delgado-Lista J, Yubero-Serrano EM, Lopez-Moreno J, Tinahones FJ, Ordovas JM, Garaulet M, Lopez-Miranda J, Perez-Martinez P. Chronic consumption of a low-fat diet improves cardiometabolic risk factors according to the CLOCK gene in patients with coronary heart disease. Mol. Nutr. Food Res. 59: 2556-64 (2015) https://doi.org/10.1002/mnfr.201500375
  28. Graff M, Scott RA, Justice AE, Young KL, Feitosa MF, Barata L, Winkler TW, Chu AY, Mahajan A, Hadley D. Genome-wide physical activity interactions in adiposity-A meta-analysis of 200,452 adults. PLoS genetics 13: e1006528 (2017) https://doi.org/10.1371/journal.pgen.1006528
  29. Guenard F, Deshaies Y, Hould F-S, Lebel S, Tchernof A, Marceau P, Vohl M-C. Use of blood as a surrogate model for the assessment of visceral adipose tissue methylation profiles associated with the metabolic syndrome in men. J. Mol. Genet. Med. 10:1 (2016)
  30. Guenard F, Tchernof A, Deshaies Y, Perusse L, Biron S, Lescelleur O, Biertho L, Marceau S, Vohl M-C. Differential methylation in visceral adipose tissue of obese men discordant for metabolic disturbances. Physiol. Genomics 46: 216-222 (2014) https://doi.org/10.1152/physiolgenomics.00160.2013
  31. Heianza Y, Qi L. Gene-diet interaction and precision nutrition in obesity. IJMS 18: 787 (2017) https://doi.org/10.3390/ijms18040787
  32. Hershey MS, Sotos-Prieto M, Ruiz-Canela M, Christophi CA, Moffatt S, Martinez-Gonzalez MA, Kales SN. The Mediterranean lifestyle (MEDLIFE) index and metabolic syndrome in a nonMediterranean working population. Clin. Nutr. 40: 2494-2503 (2021) https://doi.org/10.1016/j.clnu.2021.03.026
  33. Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation 126: 126-32 (2012) https://doi.org/10.1161/CIRCULATIONAHA.111.087213
  34. Juma S, Imrhan V, Vijayagopal P, Prasad C. Prescribing personalized nutrition for cardiovascular health: are we ready? Lifestyle Genomics 7: 153-160 (2014) https://doi.org/10.1159/000370213
  35. Kang JX. Future directions in nutrition research. Lifestyle Genomics 6: I-III (2013a)
  36. Kang JX. Gut microbiota and personalized nutrition. Lifestyle Genomics 6: I-II (2013b)
  37. Kim Y, Kim KJ, Park S-Y, Lim Y, Kwon O, Lee JH, Kim JY. Differential responses of endothelial integrity upon the intake of microencapsulated garlic, tomato extract or a mixture: A single-intake, randomized, double-blind, placebo-controlled crossover trial. Food Funct. 9: 5426-5435 (2018) https://doi.org/10.1039/C8FO01431K
  38. Kim Y, Kim Y, Hwang J, van den Broek TJ, Oh B, Kim JY, Wopereis S, Bouwman J, Kwon O. A Machine Learning Algorithm for Quantitatively Diagnosing Oxidative Stress Risks in Healthy Adult Individuals Based on Health Space Methodology: A Proof-of-Concept Study Using Korean Cross-Sectional Cohort Data. Antioxidants 10: 1132 (2021) https://doi.org/10.3390/antiox10071132
  39. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, Britt EB, Fu X, Wu Y, Li L. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19: 576-585 (2013) https://doi.org/10.1038/nm.3145
  40. Kramer CK, Zinman B, Retnakaran R. Are metabolically healthy overweight and obesity benign conditions? A systematic review and meta-analysis. Ann. Intern. Med. 159: 758-769 (2013) https://doi.org/10.7326/0003-4819-159-11-201312030-00008
  41. Kwon O. A big picture view of precision nutrition: from reductionism to holism. J. Nutr. Health 52: 1-5 (2019) https://doi.org/10.4163/jnh.2019.52.1.1
  42. Li S, Zhao JH, Luan Ja, Ekelund U, Luben RN, Khaw K-T, Wareham NJ, Loos RJ. Physical activity attenuates the genetic predisposition to obesity in 20,000 men and women from EPIC-Norfolk prospective population study. PLoS medicine 7: e1000332 (2010) https://doi.org/10.1371/journal.pmed.1000332
  43. Macartney-Coxson D, Benton MC, Blick R, Stubbs RS, Hagan RD, Langston MA. Genome-wide DNA methylation analysis reveals loci that distinguish different types of adipose tissue in obese individuals. Clin. Epigenetics 9: 1-21 (2017) https://doi.org/10.1186/s13148-016-0308-0
  44. Martin CK, Correa JB, Han H, Allen HR, Rood JC, Champagne CM, Gunturk BK, Bray GA. Validity of the Remote Food Photography Method (RFPM) for estimating energy and nutrient intake in near real-time. Obesity (Silver Spring) 20: 891-9 (2012) https://doi.org/10.1038/oby.2011.344
  45. Martin CK, Han H, Coulon SM, Allen HR, Champagne CM, Anton SD. A novel method to remotely measure food intake of free-living individuals in real time: the remote food photography method. Br. J. Nutr. 101: 446-56 (2009) https://doi.org/10.1017/S0007114508027438
  46. Martinez-Gonzalez MA, Garcia-Arellano A, Toledo E, Salas-Salvado J, Buil-Cosiales P, Corella D, Covas MI, Schroder H, Aros F, Gomez-Gracia E, Fiol M, Ruiz-Gutierrez V, Lapetra J, Lamuela-Raventos RM, Serra-Majem L, Pinto X, Munoz MA, Warnberg J, Ros E, Estruch R, Investigators PS. A 14-item Mediterranean diet assessment tool and obesity indexes among high-risk subjects: the PREDIMED trial. PLoS One 7: e43134 (2012) https://doi.org/10.1371/journal.pone.0043134
  47. Martinez JA, Navas-Carretero S, Saris WH, Astrup A. Personalized weight loss strategies-the role of macronutrient distribution. Nat. Rev. Endocrinol. 10: 749-760 (2014) https://doi.org/10.1038/nrendo.2014.175
  48. Mathews AT, Famodu OA, Olfert MD, Murray PJ, Cuff CF, Downes MT, Haughey NJ, Colby SE, Olfert IM, McFadden JW. Fruit and Vegetable Intervention Lowers Circulating Ceramide Levels and Improves Estimated Insulin Sensitivity in Young Adults at Risk of Developing Metabolic Syndrome: A FRUVEDomic Pilot Study. FASEB J. 30: 1260.3-1260.3 (2016)
  49. Mattfeld RS, Muth ER, Hoover A. Measuring the Consumption of Individual Solid and Liquid Bites Using a Table-Embedded Scale During Unrestricted Eating. IEEE J. Biomed. Health Inform. 21: 1711-1718 (2017) https://doi.org/10.1109/JBHI.2016.2632621
  50. McMahon G, Taylor AE, Davey Smith G, Munafo MR. Phenotype refinement strengthens the association of AHR and CYP1A1 genotype with caffeine consumption. PLoS One 9: e103448 (2014) https://doi.org/10.1371/journal.pone.0103448
  51. Milagro FI, Campion J, Cordero P, Goyenechea E, GGomez-Uriz AM, Abete I, Zulet MA, Martinez JA. A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. FASEB J. 25: 1378-1389 (2011) https://doi.org/10.1096/fj.10-170365
  52. Moleres A, Campion J, Milagro FI, Marcos A, Campoy C, Garagorri JM, Gomez-Martinez S, Martinez JA, Azcona-Sanjulian MC, Marti A. Differential DNA methylation patterns between high and low responders to a weight loss intervention in overweight or obese adolescents: the EVASYON study. FASEB J. 27: 2504-2512 (2013) https://doi.org/10.1096/fj.12-215566
  53. Nicoletti CF, Nonino CB, de Oliveira BAP, de Souza Pinhel MA, Mansego ML, Milagro FI, Zulet MA, Martinez JA. DNA methylation and hydroxymethylation levels in relation to two weight loss strategies: energy-restricted diet or bariatric surgery. Obes. surg. 26: 603-611 (2016) https://doi.org/10.1007/s11695-015-1802-8
  54. Olfert MD, Cuff C, Cockburn A, Olfert M, McFadden J, Downes M, Murray P, Holaskova I, Barr M, Colby S. Nutrition Intervention to Profile Microbiome and Behaviors in Young Adults at Risk for Metabolic Syndrome: FRUVEDomic Pilot Study. JNEB 48: S145 (2016)
  55. Ouellette C, Rudkowska I, Lemieux S, Lamarche B, Couture P, Vohl MC. Gene-diet interactions with polymorphisms of the MGLL gene on plasma low-density lipoprotein cholesterol and size following an omega-3 polyunsaturated fatty acid supplementation: a clinical trial. Lipids Health Dis. 13: 86 (2014) https://doi.org/10.1186/1476-511X-13-86
  56. Ozdemir V, Kolker E. Precision Nutrition 4.0: A Big Data and Ethics Foresight Analysis--Convergence of Agrigenomics, Nutrigenomics, Nutriproteomics, and Nutrimetabolomics. OMICS 20: 69-75 (2016) https://doi.org/10.1089/omi.2015.0193
  57. Palatini P, Ceolotto G, Ragazzo F, Dorigatti F, Saladini F, Papparella I, Mos L, Zanata G, Santonastaso M. CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. J. Hypertens. 27: 1594-601 (2009) https://doi.org/10.1097/HJH.0b013e32832ba850
  58. Palmnas M, Brunius C, Shi L, Rostgaard-Hansen A, Torres NE, Gonzalez-Dominguez R, Zamora-Ros R, Ye YL, Halkjaer J, Tjonneland A. Perspective: metabotyping-a potential personalized nutrition strategy for precision prevention of cardiometabolic disease. Adv. Nutr. 11: 524-532 (2020) https://doi.org/10.1093/advances/nmz121
  59. Potter GD, Cade JE, Grant PJ, Hardie LJ. Nutrition and the circadian system. Br. J. Nutr. 116: 434-42 (2016) https://doi.org/10.1017/S0007114516002117
  60. Qi Q, Li Y, Chomistek AK, Kang JH, Curhan GC, Pasquale LR, Willett WC, Rimm EB, Hu FB, Qi L. Television watching, leisure time physical activity, and the genetic predisposition in relation to body mass index in women and men. Circulation 126: 1821-1827 (2012) https://doi.org/10.1161/CIRCULATIONAHA.112.098061
  61. Ronn T, Volkov P, Gillberg L, Kokosar M, Perfilyev A, Jacobsen AL, Jorgensen SW, Brons C, Jansson P-A, Eriksson K-F. Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum. Mol. Genet. 24: 3792-3813 (2015) https://doi.org/10.1093/hmg/ddv124
  62. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341 (2013)
  63. Riedl A, Gieger C, Hauner H, Daniel H, Linseisen J. Metabotyping and its application in targeted nutrition: an overview. BJN 117: 1631-1644 (2017) https://doi.org/10.1017/S0007114517001611
  64. Rudkowska I, Perusse L, Bellis C, Blangero J, Despres JP, Bouchard C, Vohl MC. Interaction between Common Genetic Variants and Total Fat Intake on Low-Density Lipoprotein Peak Particle Diameter: A Genome-Wide Association Study. J. Nutrigenet. Nutrigenomics 8: 44-53 (2015) https://doi.org/10.1159/000431151
  65. Sebedio J-L. Metabolomics, nutrition, and potential biomarkers of food quality, intake, and health status. pp. 83-116. In: Adv. Food Nutr. Res.. Elsevier (2017)
  66. Schram MT, Sep SJ, van der Kallen CJ, Dagnelie PC, Koster A, Schaper N, Henry RM, Stehouwer CD. The Maastricht Study: an extensive phenotyping study on determinants of type 2 diabetes, its complications and its comorbidities. Eur. J. Epidemiol. 29: 439- 451 (2014) https://doi.org/10.1007/s10654-014-9889-0
  67. Schroder H, Fito M, Estruch R, Martinez-Gonzalez MA, Corella D, Salas-Salvado J, Lamuela-Raventos R, Ros E, Salaverria I, Fiol M, Lapetra J, Vinyoles E, Gomez-Gracia E, Lahoz C, Serra-Majem L, Pinto X, Ruiz-Gutierrez V, Covas MI. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J. Nutr. 141: 1140-5 (2011) https://doi.org/10.3945/jn.110.135566
  68. Sevilla-Villanueva B, Gibert K, Sanchez-Marre M, Fito M, Covas MI. Evaluation of Adherence to Nutritional Intervention Through Trajectory Analysis. IEEE J. Biomed. Health Inform. 21: 628-634 (2017) https://doi.org/10.1109/JBHI.2016.2634698
  69. Sotos-Prieto M, Moreno-Franco B, Ordovas JM, Leon M, Casasnovas JA, Penalvo JL. Design and development of an instrument to measure overall lifestyle habits for epidemiological research: the Mediterranean Lifestyle (MEDLIFE) index. Public Health Nutr. 18: 959-67 (2015) https://doi.org/10.1017/S1368980014001360
  70. Tchernof A, Despres J-P. Pathophysiology of human visceral obesity: an update. Physiol. Rev. (2013)
  71. Trabado S, Al-Salameh A, Croixmarie V, Masson P, Corruble E, Feve B, Colle R, Ripoll L, Walther B, Boursier-Neyret C. The human plasma-metabolome: Reference values in 800 French healthy volunteers; impact of cholesterol, gender and age. PloS one 12: e0173615 (2017) https://doi.org/10.1371/journal.pone.0173615
  72. Tremblay BL, Cormier H, Rudkowska I, Lemieux S, Couture P, Vohl MC. Association between polymorphisms in phospholipase A2 genes and the plasma triglyceride response to an n-3 PUFA supplementation: a clinical trial. Lipids Health Dis. 14: 12 (2015) https://doi.org/10.1186/s12944-015-0009-2
  73. Vallee Marcotte B, Cormier H, Guenard F, Rudkowska I, Lemieux S, Couture P, Vohl MC. Novel Genetic Loci Associated with the Plasma Triglyceride Response to an Omega-3 Fatty Acid Supplementation. J. Nutrigenet. Nutrigenomics 9: 1-11 (2016) https://doi.org/10.1159/000446024
  74. Vesnina A, Prosekov A, Kozlova O, Atuchin V. Genes and eating preferences, their roles in personalized nutrition. Genes 11: 357 (2020) https://doi.org/10.3390/genes11040357
  75. Wopereis S, Stroeve JH, Stafleu A, Bakker GC, Burggraaf J, van Erk MJ, Pellis L, Boessen R, Kardinaal AA, van Ommen B. Multi-parameter comparison of a standardized mixed meal tolerance test in healthy and type 2 diabetic subjects: the PhenFlex challenge. Genes Nutr. 12: 1-14 (2017) https://doi.org/10.1186/s12263-016-0550-2
  76. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A, Ben-Yacov O, Lador D, Avnit-Sagi T, Lotan-Pompan M, Suez J, Mahdi JA, Matot E, Malka G, Kosower N, Rein M, Zilberman-Schapira G, Dohnalova L, Pevsner-Fischer M, Bikovsky R, Halpern Z, Elinav E, Segal E. Personalized Nutrition by Prediction of Glycemic Responses. Cell 163: 1079-1094 (2015) https://doi.org/10.1016/j.cell.2015.11.001