References
- ACI 318 (2014), Building Code Requirements for Reinforced Concrete (ACI 318-14), American Concrete Institute; Farmington Hills, Michigan, USA.
- AISC (2016), Seismic Provisions for Structural Steel Buildings, Standard ANSI/AISC 341-02, American Institute of Steel Construction, Inc., Chicago, IL, USA.
- Al-Osta, M. (2019), "Shear behaviour of RC beams retrofitted using UHPFRC panels epoxied to the sides", Comput. Concrete, 24(1), 37-49. http://doi.org/10.12989/cac.2019.24.1.037.
- Au, F.T.K. and Bai, Z.Z. (2006), "Effect of axial load on flexural behaviour of cyclically loaded RC columns", Comput. Concrete, 3(4), 261-284. http://doi.org/10.12989/cac.2006.3.4.261.
- Balendra, T., Sam, M., Liaw, C.Y. and Lee, S. (1991), "Preliminary studies into the behavior of knee braced frames subject to seismic loading", Eng. Struct., 13(1), 67-74. https://doi.org/10.1016/0141-0296(91)90010-A .
- Batterbee, D. C. and Sims, N.D. (2005), "Vibration isolation with smart fluid dampers: a benchmarking study", Smart Struct. Syst., 1(3), 235-256. http://doi.org/10.12989/sss.2005.1.3.235.
- Berman, J. and Bruneau, M. (2007), "Experimental and analytical investigation of tubular links for eccentrically braced frames", Eng. Struct., 29, 1929-1938. https://doi.org/10.1016/j.engstruct.2006.10.012.
- Bouwkamp, J., Vetr, M.G. and Ghamari, A. (2016), "An analytical model for inelastic cyclic response of eccentrically braced frame with vertical shear link (V-EBF)", Case Stud. Struct. Eng., 6, 31-44. https://doi.org/10.1016/j.csse.2016.05.002.
- Broujerdian. V., Shayanfar, M.A. and Ghamari, A. (2017), "Corner crack effect on the seismic behavior of steel plate shear wall system", Civil Eng. Infrastr. J., 50(2), 311-332. https://doi.org/10.7508/ceij.2017.02.007.
- Chen, L., Tremblay, R. and Tirca, L. (2019), "Modular tied eccentrically braced frames for improved seismic response of tall buildings", J. Constr. Steel Res., 155, 370-384. https://doi.org/10.1016/j.jcsr.2019.01.005.
- Dadmand, B., Pourbaba, M., Sadaghian, H. and Mirmiran, A. (2020), "Experimental & numerical investigation of mechanical properties in steel fiber-reinforced UHPC", Comput. Concrete, 26(5), 451-465. http://doi.org/10.12989/cac.2020.26.5.451.
- Du, Z.L., Liu, Y.P. and Chan, S.L. (2019), "A practical analytical model for special concentrically braced frames", J. Constr. Steel Res., 155, 219-232. https://doi.org/10.1016/j.jcsr.2018.12.027.
- Eldin, M.N., Kim, J. and Kim, J. (2018), "Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost", Steel Compos. Struct., 27(5), 633-646. http://doi.org/10.12989/scs.2018.27.5.633.
- Fakhraddini, A., Fadaee. M.J. and Saffari, H. (2018), "A lateral load pattern based on energy evaluation for eccentrically braced frames", Steel Compos. Struct., 27(5), 623-632, http://doi.org/10.12989/scs.2018.27.5.623.
- FEMA 356 (2015), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, D.C., USA.
- FEMA 440 (2015), Improvement of Nonlinear Static Seismic Analysis Procedure, Federal Emergency Management Agency, Washington, D.C., USA.
- Ghamari, A., Haeri, H., Khaloo, A. and Zhu, A. (2019), "Improving the hysteretic behavior of Concentrically Braced Frame (CBF) by a proposed shear damper", Steel Compos. Struct., 30(4), 383-392. https://doi.org/10.12989/scs.2019.30.4.383.
- Ghasemitabar, A., Rahmdel, J. and Shafei, E. (2020), "Cyclic performance of RC beam-column joints enhanced with superelastic SMA rebars", Comput. Concrete, 25(4), 293-302. http://doi.org/10.12989/cac.2020.25.4.293.
- Ghobarah, A. and AbouElfath, H. (2001), "Rehabilitation of a reinforced concrete frame using eccentric steel bracing", Eng. Struct., 23, 745-755. https://doi.org/10.1016/S0141-0296(00)00100-0.
- Haddad, M. and Shrive, N. (2019), "Investigating the inelastic cyclic behaviour of large-size steel wide-flange section braces", Constr. Build. Mater., 199(28), 92-105. https://doi.org/10.1016/j.conbuildmat.2018.12.016.
- Hatami, F., Ghamari, A. and Hatami, F. (2014), "Effect of fiber angle on LYP steel shear walls behavior", J. Central South Univ., 21(2), 768-774. https://doi.org/10.1007/s11771-014-2000-x.
- Iranian Code of Practice for Seismic Resistant Design of Buildings (Standard No. 2800) (2015), Building and Housing Research Center (BHRC), 4th Revision, Tehran, Iran.
- Javidan, M.M. and Kim, J. (2020), "Steel hysteretic column dampers for seismic retrofit of soft-first-story structures", Steel Compos. Struct., 37(3), 259-272. http://doi.org/10.12989/scs.2020.37.3.259.
- Javidan, M.M., Nasab, M.S.E. and Kim, J. (2021), "Full-scale tests of two-story RC frames retrofitted with steel plate multi-slit dampers", Steel Compos. Struct., 39(5), 645-664. http://dx.doi.org/10.12989/scs.2021.39.5.645.
- Kang, J.W. and Lee, J. (2018), "A correction method for objective seismic damage index of reinforced concrete columns", Comput. Concrete, 21(6), 741-748. http://dx.doi.org/10.12989/cac.2018.21.6.741.
- Kim, J., Choi. H. and Chung. L. (2004), "Energy-based seismic design of structures with buckling-restrained braces" Steel Compos. Struct., 4(6), 437-452. http://doi.org/10.12989/scs.2004.4.6.437.
- Kontoni, D.P.N. and Farghaly, A.A. (2019a), "Mitigation of the seismic response of a cable-stayed bridge with soil-structure-interaction effect using tuned mass dampers", Struct. Eng. Mech., 69(6), 699-712. https://doi.org/10.12989/sem.2019.69.6.699.
- Kontoni, D.P.N. and Farghaly, A.A. (2019b), "The effect of base isolation and tuned mass dampers on the seismic response of RC high-rise buildings considering soil-structure interaction", Earthq. Struct., 17(4), 425-434. https://doi.org/10.12989/eas.2019.17.4.425.
- Kontoni, D.P.N. and Farghaly, A.A. (2020), "TMD effectiveness for steel high-rise building subjected to wind or earthquake including soil-structure interaction", Wind Struct., 30(4), 423-432. https://doi.org/10.12989/was.2020.30.4.423.
- Lian, M., Su, M. and Guo, Y. (2017), "Experimental performance of Y-shaped eccentrically braced frames fabricated with high strength steel", Steel Compos. Struct., 24(4), 441-453. http://dx.doi.org/10.12989/scs.2017.24.4.441.
- Lotfollahi, M. and Alinia, M. (2009), "Effect of tension bracing on the collapse mechanism of steel moment frames", J. Constr. Steel Res., 65, 2027-2039. https://doi.org/10.1016/j.jcsr.2009.06.003.
- Meraji, L., Afshin, H. and Abedi, K. (2019), "Flexural behavior of RC beams retrofitted by ultra-high performance fiber-reinforced concrete", Comput. Concrete, 24(2), 159-172. http://doi.org/10.12989/cac.2019.24.2.159.
- Mezquida-Alcaraz, E.J., Navarro-Gregori, J., Lopez, J.A. and Serna-Ros, P. (2019), "Validation of a non-linear hinge model for tensile behavior of UHPFRC using a Finite Element Model", Comput. Concrete, 32(1), 11-23. http://doi.org/10.12989/cac.2019.23.1.011.
- Momenzadeh, S.B. and Shen, J. (2018), "Seismic demand on columns in special concentrically braced frames", Eng. Struct., 168, 93-107. https://doi.org/10.1016/j.engstruct.2018.04.060.
- Mwafy, A. and Elnashai, A. (2001), "Static pushover versus dynamic collapse analysis of RC buildings", Eng. Struct., 23, 407-424. https://doi.org/10.1016/S0141-0296(00)00068-7.
- Oh, S.H., Kim, Y.J. and Ryu, H.S. (2009), "Seismic performance of steel structures with slit dampers", Eng. Struct., 31(9), 1997-2008. https://doi.org/10.1016/j.engstruct.2009.03.003.
- Ozkaynak, H. (2017), "Model proposal for steel cushions for use in reinforced concrete frames", KSCE J. Civil Eng., 21(7), 2717-2727. https://doi.org/10.1007/s12205-017-0477-1.
- Ozkaynak, H. (2018), "Earthquake behavior of steel cushionimplemented reinforced concrete frames", Earthq. Eng. Eng. Vib., 17(2), 385-401. https://doi.org/10.1007/s11803-018-0448-7.
- Ozkul, T., Kurtbeyoglu, A., Borekci, M., Zengin, B. and Kocak, A. (2019), "Effect of shear wall on seismic performance of RC frame buildings", Eng. Fail. Anal., 100, 60-75. https://doi.org/10.1016/j.engfailanal.2019.02.032.
- Qi, Y., Li, Y. and Feng, N. (2017), "Seismic collapse probability of eccentrically braced steel frames", Steel Compos. Struct., 24(1), 37-52. http://doi.org/10.12989/scs.2017.24.1.037.
- Rai, D. and Wallace, B. (1998), "Aluminum shear-links for enhanced seismic resistance", Earthq. Eng. Struct. Dyn., 27(4), 315-342. https://doi.org/10.1002/(SICI)1096-9845(199804)27:4<315::AID-EQE703>3.0.CO;2-N.
- Ricles, J. and Popov, E. (1987), "Dynamic analysis of seismically resistant eccentrically braced frames", Report No. UCB/EERC-87/07, Earthquake Engineering Research Center, University of California, Berkeley, CA, USA.
- SAP2000® Version 17 (2015), Integrated Software for Structural Analysis and Design, Computers and Structures, Inc., Walnut Creek, CA and New York, NY, USA.
- Scott, B.D., Park, R. and Priestley, M. (1982), "Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates", ACI Struct. J., 76(1), 13-27. https://doi.org/10.14359/10875.
- Shayanfar, M.A., Barkhordari, M.A. and Rezaeian, A.R. (2012), "Experimental study of cyclic behavior of composite vertical shear link in eccentrically braced frames", Steel Compos. Struct., 12(1), 13-29. http://doi.org/10.12989/scs.2011.12.1.013.
- Shayanfar, M.A., Broujerdian, V. and Ghamari, A. (2020), "Numerically and parametrically investigating the cracked Steel Plate Shear Walls (SPSWs)", Iran. J. Sci. Technol., Tran. Civil Eng., 44, 481-500. https://doi.org/10.1007/s40996-019-00250-6.
- Vetr, M.G. and Ghamari, A. (2019), "Experimentally and analytically study on eccentrically braced frame with vertical shear links", Struct. Des. Tall Spec. Build., 28(5), e1587, 1-21. https://doi.org/10.1002/tal.1587.
- Vetr, M.G., Ghamari, A. and Bouwkamp, J. (2017), "Investigating the nonlinear behavior of eccentrically braced frame with vertical shear links (V-EBF)", J. Build. Eng., 10, 47-59. https://doi.org/10.1016/j.jobe.2017.02.002.
- Xiao, S., Xu, L. and Li, Z. (2019), "Seismic performance and damage analysis of RC frame-core tube building with self-centering braces", Soil Dyn. Earthq. Eng., 120, 146-157. https://doi.org/10.1016/j.soildyn.2019.01.029.