DOI QR코드

DOI QR Code

Effect of gravity on a magneto-thermoelastic porous medium with the frame of a memory-dependent derivative in the context of the 3PHL model

  • Alharbi, Amnah M. (Department of Mathematics, College of Science, Taif Univeristy) ;
  • Said, Samia M. (Department of Mathematics, Faculty of Science, Zagazig University) ;
  • Othman, Mohamed I.A. (Department of Mathematics, Faculty of Science, Zagazig University)
  • Received : 2020.07.23
  • Accepted : 2021.07.28
  • Published : 2021.09.25

Abstract

The paper considers a 2D problem associated with a porous magneto-thermoelastic material under the effect of gravity in the context of the Three-Phase-Lag (3PHL) model and a 'memory dependent derivative frame. It has been assumed that during the initial stages, the medium is in an inactive state for the half-space (thermoelastic) the surface of this half-space is subjected to mechanical force and has a constant heat flux. The paper presents graphical illustrations of the variables under consideration as they vary along with the vertical distance. A number of figures are used to draw out several comparisons for the thermophysical quantities as they greatly assist in studying the effects of the gravity field, mechanical force, time, and thermal memories (relaxation times).

Keywords

Acknowledgement

The authors thank Taif University Researchers Supporting Project Number (TURSP-2020/230), Taif University, Taif, Saudi Arabia.

References

  1. Abbas, I.A. and Youssef, H.M. (2015), "Two-dimensional fractional order generalized thermoelastic porous material", Lat. Am. J. Sol. Struct., 12, 1415-1431. http://dx.doi.org/10.1590/1679-78251584.
  2. Abd-Elaziz, E.M., Marin, M. and Othman, M.I.A. (2019), "On the effect of Thomson and initial stress in a thermo-porous elastic solid under G-N electromagnetic theory", Symmetry, 11(3), 413-430. http://dx.doi.org/10.3390/sym11030413.
  3. Abd-Elaziz, E.M. and Othman, M.I.A. (2019), "Effect of Thomson and thermal loading due to laser pulse in a magneto-thermo-elastic porous medium with energy dissipation", ZAMM, 99(8), 1-18. http://dx.doi.org/10.1002/zamm.201900079.
  4. Abel, N.H. (1881), "Solution De Quelques problems a L'aide D'integrals Definites. Oeuvres Completes, 1, Grondahl Christiania, Norway 16-18.
  5. Arefi, M., Faegh, R.K. and Loghman, A. (2016), "The effect of axially variable thermal and mechanical loads on the 2D thermoelastic response of FG cylindrical shell", J. Therm Stress., 39(12), 1539-1559. https://doi.org/10.1080/01495739.2016.1217178.
  6. Arefi, M., Kiani, M. and Rabczuk, T. (2019), "Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets", Compos. B Eng., 168(1), 320-333. https://doi.org/10.1016/j.compositesb.2019.02.057.
  7. Arefi, M., Kiani, M. and Zamani, M.H. (2020), "Nonlocal strain gradient theory for the magneto-electro-elastic vibration response of a porous FG-core sandwich nanoplate with piezo-magnetic face sheets resting on an elastic foundation", J. Sandw. Struct. Mater., 22(7), 2157-2185. https://doi.org/10.1177/1099636218795378.
  8. Arefi, M., Firouzeh, S., Bidgoli, E.M.R. and Civalek, O. (2020), "Analysis of porous micro-plates reinforced with FG-GNPs based on reddy plate theory", Compos. Struct., 247, 112391. https://doi.org/10.1016/j.compstruct.2020.112391.
  9. Arefi, M., Kiani, M. and Civalek, O. (2020), "3-D magneto-electro-thermal analysis of layered nanoplate including porous core nanoplate and piezomagnetic face-sheets", Appl. Phys. A, 126(1), 76. https://doi.org/10.1007/s00339-019-3241-1.
  10. Abouelregal, A.E. and Zenkour, A.M. (2017), "Variability of thermal properties foe a thermoelastic loaded nano-beam excited by harmonically varying heat", Smart Struct. Syst., 20(4), 451-460. https://doi.org/10.12989/sss.2017.20.4.451.
  11. Bachher, M., Sarkar, N. and Lahiri, A. (2014), "Generalized thermoelastic infinite medium with voids subjected to a instantaneous heat sources with fractional derivative heat transfer", Int. J. Mech. Sci., 89, 84-91. https://doi.org/10.1016/j.ijmecsci.2014.08.029.
  12. Bhatti, M.M., Shahid, A., Abbas, T., Alamri, S.Z. and Ellahi, R. (2020), "Study of activation energy on the movement of gyrotactic microorganism in a magnetized nanofluids past a porous plate", Processes, 8(3), 328. https://doi.org/10.3390/pr8030328.
  13. Biswas, S. (2019), "Fundamental solution of steady oscillations for porous materials with dual-phase-lag model in micropolar thermoelasticity", Mech. Bas. Des. Struct. Mach., 47, 1-23. https://doi.org/10.1080/15397734.2018.1557528.
  14. Caputo, M. and Mainardi, F. (1971a), "A new dissipation model based on memory mechanism", Pure Appl. Ggeophys., 91, 134-147. https://doi.org/10.1007/BF00879562
  15. Caputo, M. and Mainardi, F. (1971b), "Linear model of dissipation in an elastic solids", La Rivista del Nuovo Cimento, 1, 161-198. https://doi.org/10.1007/BF02820620
  16. Caputo, M. (1971), "On an infinite viscoelastic layer with a dissipative memory", Acout. Soc. Ame., 56, 897-904. https://doi.org/10.1121/1.1903344
  17. Choudhuri, S.K.R. (2007), "On thermoelastic three phase lag model", J. Therm. Stress., 30, 231-238. https://doi.org/10.1080/01495730601130919.
  18. Cowin, S.C. and Nunziato, J.W. (1983), "Linear elastic materials with voids", J. Elast., 13, 125-147. https://doi.org/10.1007/BF00041230
  19. Ellahi, R., Sait, S.M., Shehzad, N. and Ayaz, Z. (2020), "A hybrid investigation on numerical and analytical solutions of electro-magneto-hydrodynamics flow of nanofluid through porous media with entropy generation", Int. J. Numer. Method. Heat Fluid Fl., 30(2), 834-854. https://doi.org/10.1108/HFF-06-2019-0506.
  20. Fetecau, C., Ellahi, R., Khan, M. and Shah, N.A. (2018), "Combined porous and magnetic effects on some fundamental motions of Newtonian fluids over an infinite plate", J. Porous Media, 21(7), 589-605. https://doi.org/10.1615/JPorMedia.v21.i7.20.
  21. Goodmann, M.A. and Cowin, S.C. (1972), "A continuum theory for granular materials", Arch. Rat. Mech. Anal., 44, 249-266. https://doi.org/10.1007/BF00284326
  22. Lata, P. and Singh, B. (2019), "Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load", Steel Compos. Struct., 33(1), 123-131. https://doi.org/10.12989/scs.2019.33.1.123.
  23. Loghman, A., Nasr, M. and Arefi, M. (2017), "Nanosymmetric thermomechanical analysis of a functionally graded cylinder subjected to mechanical thermal and magnetic loads", 40(6), 765-782. https://doi.org/10.1080/01495739.2017.1280380.
  24. Marin, M. and Florea, O. (2014), "On temporal behavior of solutions in theromelasticity of porous micropolar bodies", Anal. Stiintifice. ale Universitatii. Ovidius. Constanta, 22, 169-188.
  25. Marin, M., Othman, M.I.A., Vlase, S. and Codarcea-Munteanu, L. (2019), "Thermoelasticity of initially stressed bodies with voids: A domain of influence", Symmetry, 11(4), 573-584. https://doi.org/10.3390/sym11040573
  26. Mahmoudi, A., Benyoucef, S. and Tounsi, A. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1926. https://doi.org/10.1177/1099636217727577.
  27. Mirzaei, M.M.H., Arefi, M. and Loghman, A. (2019), "Creep analysis of a rotating functionally graded simple blade: steady state analysis", Steel Compos. Struct., 33(3), 463-472. https://doi.org/10.12989/scs.2019.33.3.463.
  28. Mondal, S., Pal, P. and Kanoria, M. (2019), "Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative", Acta Mech., 230, 179-199. https://doi.org/10.1007/s00707-018-2307-z.
  29. Nazari, S., Ellahi, R., Sarafraz, M.M., Safaei, M.R., Asgari, A. and Akbari, O.A. (2020), "Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two liddriven square cavity", J. Therm. Anal. Calor., 140, 1121-1145. https://doi.org/10.1007/s10973-019-08841-1.
  30. Othman, M.I.A., Elmaklizi, Y.D. and Said, S.M. (2013), "Generalized thermoelastic medium with temperature dependent properties for different theories under the effect of gravity field", Int. J. Thermophys., 34(3), 521-537. https://doi.org/10.1007/s10765-013-1425-z.
  31. Othman, M.I.A. and Abd-Elaziz, E.M. (2019a), "Influence of gravity and micro-temperatures on the thermoelastic porous medium under three theories", Int. J. Numer. Method. Heat Fluid Fl., 29(9), 3242-3262. https://doi.org/10.1108/HFF-12-2018-0763
  32. Othman, M.I.A. and Abd-Elaziz, E.M. (2019b), "Effect of initial stress and Hall current on a magneto-thermoelastic porous medium with micro-temperatures", Ind. J. Phys., 93(4), 475-485. https://doi.org/10.1007/s12648-018-1313-2.
  33. Othman, M.I.A. and Mondal, S. (2020), "Memory dependent-derivative effect on wave propagation of micropolar thermo-elastic medium under pulsed laser heating with three theories", Int. J. Numer. Method. Heat Fluid Fl., 30(3), 1025-1046. https://doi.org/10.1108/HFF-05-2019-0402.
  34. Othman, M.I.A. and Mondal, S. (2020), "Memory-dependent derivative effect on 2D problem of generalized thermoelastic rotating medium with Lord-Shulman model", Ind. J. Phys., in press. https://doi.org/10.1007/s12648-019-01548-x.
  35. Othman, M.I.A., Zidan, M.E.M. and Mohamed, I.E.A. (2021), "Dual-phase-lag model on thermo-microstretch elastic solid under the effect of initial stress and temperature-dependent", Steel Compos. Struct., 38(4), 355-363. https://doi.org/10.12989/scs.2021.38.4.355
  36. Pecker, C. and Deresiewiez, H. (1973), "Thermal effects on wavein liquid-filled porous media", J. Acta Mech., 16, 45-64. https://doi.org/10.1007/BF01177125
  37. Purkaita, P., Surb, A. and Kanoria, M. (2017), "Thermoelastic interaction in a two-dimensional infinite space due to memory-dependent heat transfer", Int. J. Adv. Appl. Math. Mech., 5, 28-39. https://creativecommons.org/licenses/by-nc-nd/3.0/.
  38. Said, S.M. (2015), "Deformation of a rotating two-temperature generalized-magneto thermoelastic medium with internal heat source due to hydrostatic initial stress", Meccanica, 50(8), 2077-2091. https://doi.org/10.1007/s11012-015-0136-x.
  39. Said, S.M. (2016), "Two-temperature generalized magneto-thermo-elastic medium for dual-phase-lag model under the effect of gravity field and hydrostatic initial stress", Multi. Modl. Mater. Struct., 12, 362-383. https://doi.org/10.1108/MMMS-09-2015-0049.
  40. Said, S.M., Abd-Elaziz, E.M. and Othman, M.I.A. (2020), "Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity", Steel and Compos. Struct., 36(6), 617-629. https://doi.org/10.12989/scs.2020.36.6.617.
  41. Shaw, S. and Othman, M.I.A. (2019), "Characteristics of Rayleigh wave propagating in orthotropic magneto-thermoelastic half-space: An eigen function expansion method", Appl. Math. Model., 67, 605-620. https://doi.org/10.1016/j.apm.2018.11.019.
  42. Wang, J.L. and Li, H.F. (2011), "Surpassing the fractional derivative: concept of the memory dependent derivative", Comput. Math. Appl., 62, 1562-1567. https://doi.org/10.1016/j.camwa.2011.04.028.
  43. Xiong, C., Guo, Y. and Diao, Y. (2017), "Normal mode analysis to a poroelastic half-space problem under generalized thermo- elasticity", Latin. Am. J. Sol. Struct., 14, 930-949. https://doi.org/10.1590/1679-78253611.