Acknowledgement
The authors thank Taif University Researchers Supporting Project Number (TURSP-2020/230), Taif University, Taif, Saudi Arabia.
References
- Abbas, I.A. and Youssef, H.M. (2015), "Two-dimensional fractional order generalized thermoelastic porous material", Lat. Am. J. Sol. Struct., 12, 1415-1431. http://dx.doi.org/10.1590/1679-78251584.
- Abd-Elaziz, E.M., Marin, M. and Othman, M.I.A. (2019), "On the effect of Thomson and initial stress in a thermo-porous elastic solid under G-N electromagnetic theory", Symmetry, 11(3), 413-430. http://dx.doi.org/10.3390/sym11030413.
- Abd-Elaziz, E.M. and Othman, M.I.A. (2019), "Effect of Thomson and thermal loading due to laser pulse in a magneto-thermo-elastic porous medium with energy dissipation", ZAMM, 99(8), 1-18. http://dx.doi.org/10.1002/zamm.201900079.
- Abel, N.H. (1881), "Solution De Quelques problems a L'aide D'integrals Definites. Oeuvres Completes, 1, Grondahl Christiania, Norway 16-18.
- Arefi, M., Faegh, R.K. and Loghman, A. (2016), "The effect of axially variable thermal and mechanical loads on the 2D thermoelastic response of FG cylindrical shell", J. Therm Stress., 39(12), 1539-1559. https://doi.org/10.1080/01495739.2016.1217178.
- Arefi, M., Kiani, M. and Rabczuk, T. (2019), "Application of nonlocal strain gradient theory to size dependent bending analysis of a sandwich porous nanoplate integrated with piezomagnetic face-sheets", Compos. B Eng., 168(1), 320-333. https://doi.org/10.1016/j.compositesb.2019.02.057.
- Arefi, M., Kiani, M. and Zamani, M.H. (2020), "Nonlocal strain gradient theory for the magneto-electro-elastic vibration response of a porous FG-core sandwich nanoplate with piezo-magnetic face sheets resting on an elastic foundation", J. Sandw. Struct. Mater., 22(7), 2157-2185. https://doi.org/10.1177/1099636218795378.
- Arefi, M., Firouzeh, S., Bidgoli, E.M.R. and Civalek, O. (2020), "Analysis of porous micro-plates reinforced with FG-GNPs based on reddy plate theory", Compos. Struct., 247, 112391. https://doi.org/10.1016/j.compstruct.2020.112391.
- Arefi, M., Kiani, M. and Civalek, O. (2020), "3-D magneto-electro-thermal analysis of layered nanoplate including porous core nanoplate and piezomagnetic face-sheets", Appl. Phys. A, 126(1), 76. https://doi.org/10.1007/s00339-019-3241-1.
- Abouelregal, A.E. and Zenkour, A.M. (2017), "Variability of thermal properties foe a thermoelastic loaded nano-beam excited by harmonically varying heat", Smart Struct. Syst., 20(4), 451-460. https://doi.org/10.12989/sss.2017.20.4.451.
- Bachher, M., Sarkar, N. and Lahiri, A. (2014), "Generalized thermoelastic infinite medium with voids subjected to a instantaneous heat sources with fractional derivative heat transfer", Int. J. Mech. Sci., 89, 84-91. https://doi.org/10.1016/j.ijmecsci.2014.08.029.
- Bhatti, M.M., Shahid, A., Abbas, T., Alamri, S.Z. and Ellahi, R. (2020), "Study of activation energy on the movement of gyrotactic microorganism in a magnetized nanofluids past a porous plate", Processes, 8(3), 328. https://doi.org/10.3390/pr8030328.
- Biswas, S. (2019), "Fundamental solution of steady oscillations for porous materials with dual-phase-lag model in micropolar thermoelasticity", Mech. Bas. Des. Struct. Mach., 47, 1-23. https://doi.org/10.1080/15397734.2018.1557528.
- Caputo, M. and Mainardi, F. (1971a), "A new dissipation model based on memory mechanism", Pure Appl. Ggeophys., 91, 134-147. https://doi.org/10.1007/BF00879562
- Caputo, M. and Mainardi, F. (1971b), "Linear model of dissipation in an elastic solids", La Rivista del Nuovo Cimento, 1, 161-198. https://doi.org/10.1007/BF02820620
- Caputo, M. (1971), "On an infinite viscoelastic layer with a dissipative memory", Acout. Soc. Ame., 56, 897-904. https://doi.org/10.1121/1.1903344
- Choudhuri, S.K.R. (2007), "On thermoelastic three phase lag model", J. Therm. Stress., 30, 231-238. https://doi.org/10.1080/01495730601130919.
- Cowin, S.C. and Nunziato, J.W. (1983), "Linear elastic materials with voids", J. Elast., 13, 125-147. https://doi.org/10.1007/BF00041230
- Ellahi, R., Sait, S.M., Shehzad, N. and Ayaz, Z. (2020), "A hybrid investigation on numerical and analytical solutions of electro-magneto-hydrodynamics flow of nanofluid through porous media with entropy generation", Int. J. Numer. Method. Heat Fluid Fl., 30(2), 834-854. https://doi.org/10.1108/HFF-06-2019-0506.
- Fetecau, C., Ellahi, R., Khan, M. and Shah, N.A. (2018), "Combined porous and magnetic effects on some fundamental motions of Newtonian fluids over an infinite plate", J. Porous Media, 21(7), 589-605. https://doi.org/10.1615/JPorMedia.v21.i7.20.
- Goodmann, M.A. and Cowin, S.C. (1972), "A continuum theory for granular materials", Arch. Rat. Mech. Anal., 44, 249-266. https://doi.org/10.1007/BF00284326
- Lata, P. and Singh, B. (2019), "Effect of nonlocal parameter on nonlocal thermoelastic solid due to inclined load", Steel Compos. Struct., 33(1), 123-131. https://doi.org/10.12989/scs.2019.33.1.123.
- Loghman, A., Nasr, M. and Arefi, M. (2017), "Nanosymmetric thermomechanical analysis of a functionally graded cylinder subjected to mechanical thermal and magnetic loads", 40(6), 765-782. https://doi.org/10.1080/01495739.2017.1280380.
- Marin, M. and Florea, O. (2014), "On temporal behavior of solutions in theromelasticity of porous micropolar bodies", Anal. Stiintifice. ale Universitatii. Ovidius. Constanta, 22, 169-188.
- Marin, M., Othman, M.I.A., Vlase, S. and Codarcea-Munteanu, L. (2019), "Thermoelasticity of initially stressed bodies with voids: A domain of influence", Symmetry, 11(4), 573-584. https://doi.org/10.3390/sym11040573
- Mahmoudi, A., Benyoucef, S. and Tounsi, A. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1926. https://doi.org/10.1177/1099636217727577.
- Mirzaei, M.M.H., Arefi, M. and Loghman, A. (2019), "Creep analysis of a rotating functionally graded simple blade: steady state analysis", Steel Compos. Struct., 33(3), 463-472. https://doi.org/10.12989/scs.2019.33.3.463.
- Mondal, S., Pal, P. and Kanoria, M. (2019), "Transient response in a thermoelastic half-space solid due to a laser pulse under three theories with memory-dependent derivative", Acta Mech., 230, 179-199. https://doi.org/10.1007/s00707-018-2307-z.
- Nazari, S., Ellahi, R., Sarafraz, M.M., Safaei, M.R., Asgari, A. and Akbari, O.A. (2020), "Numerical study on mixed convection of a non-Newtonian nanofluid with porous media in a two liddriven square cavity", J. Therm. Anal. Calor., 140, 1121-1145. https://doi.org/10.1007/s10973-019-08841-1.
- Othman, M.I.A., Elmaklizi, Y.D. and Said, S.M. (2013), "Generalized thermoelastic medium with temperature dependent properties for different theories under the effect of gravity field", Int. J. Thermophys., 34(3), 521-537. https://doi.org/10.1007/s10765-013-1425-z.
- Othman, M.I.A. and Abd-Elaziz, E.M. (2019a), "Influence of gravity and micro-temperatures on the thermoelastic porous medium under three theories", Int. J. Numer. Method. Heat Fluid Fl., 29(9), 3242-3262. https://doi.org/10.1108/HFF-12-2018-0763
- Othman, M.I.A. and Abd-Elaziz, E.M. (2019b), "Effect of initial stress and Hall current on a magneto-thermoelastic porous medium with micro-temperatures", Ind. J. Phys., 93(4), 475-485. https://doi.org/10.1007/s12648-018-1313-2.
- Othman, M.I.A. and Mondal, S. (2020), "Memory dependent-derivative effect on wave propagation of micropolar thermo-elastic medium under pulsed laser heating with three theories", Int. J. Numer. Method. Heat Fluid Fl., 30(3), 1025-1046. https://doi.org/10.1108/HFF-05-2019-0402.
- Othman, M.I.A. and Mondal, S. (2020), "Memory-dependent derivative effect on 2D problem of generalized thermoelastic rotating medium with Lord-Shulman model", Ind. J. Phys., in press. https://doi.org/10.1007/s12648-019-01548-x.
- Othman, M.I.A., Zidan, M.E.M. and Mohamed, I.E.A. (2021), "Dual-phase-lag model on thermo-microstretch elastic solid under the effect of initial stress and temperature-dependent", Steel Compos. Struct., 38(4), 355-363. https://doi.org/10.12989/scs.2021.38.4.355
- Pecker, C. and Deresiewiez, H. (1973), "Thermal effects on wavein liquid-filled porous media", J. Acta Mech., 16, 45-64. https://doi.org/10.1007/BF01177125
- Purkaita, P., Surb, A. and Kanoria, M. (2017), "Thermoelastic interaction in a two-dimensional infinite space due to memory-dependent heat transfer", Int. J. Adv. Appl. Math. Mech., 5, 28-39. https://creativecommons.org/licenses/by-nc-nd/3.0/.
- Said, S.M. (2015), "Deformation of a rotating two-temperature generalized-magneto thermoelastic medium with internal heat source due to hydrostatic initial stress", Meccanica, 50(8), 2077-2091. https://doi.org/10.1007/s11012-015-0136-x.
- Said, S.M. (2016), "Two-temperature generalized magneto-thermo-elastic medium for dual-phase-lag model under the effect of gravity field and hydrostatic initial stress", Multi. Modl. Mater. Struct., 12, 362-383. https://doi.org/10.1108/MMMS-09-2015-0049.
- Said, S.M., Abd-Elaziz, E.M. and Othman, M.I.A. (2020), "Modeling of memory-dependent derivative in a rotating magneto-thermoelastic diffusive medium with variable thermal conductivity", Steel and Compos. Struct., 36(6), 617-629. https://doi.org/10.12989/scs.2020.36.6.617.
- Shaw, S. and Othman, M.I.A. (2019), "Characteristics of Rayleigh wave propagating in orthotropic magneto-thermoelastic half-space: An eigen function expansion method", Appl. Math. Model., 67, 605-620. https://doi.org/10.1016/j.apm.2018.11.019.
- Wang, J.L. and Li, H.F. (2011), "Surpassing the fractional derivative: concept of the memory dependent derivative", Comput. Math. Appl., 62, 1562-1567. https://doi.org/10.1016/j.camwa.2011.04.028.
- Xiong, C., Guo, Y. and Diao, Y. (2017), "Normal mode analysis to a poroelastic half-space problem under generalized thermo- elasticity", Latin. Am. J. Sol. Struct., 14, 930-949. https://doi.org/10.1590/1679-78253611.