DOI QR코드

DOI QR Code

fMWNTs/GO/MnO2 nanocomposites as additives in a membrane for the removal of crystal violet

  • Sabna, V (Department of Civil Engineering, National Institute of Technology Calicut) ;
  • Thampi, Santosh G (Department of Civil Engineering, National Institute of Technology Calicut) ;
  • Chandrakaran, S (Department of Civil Engineering, National Institute of Technology Calicut) ;
  • Sasina, EP (Department of Environmental Science, University of Calicut) ;
  • Resmi, P (Department of Environmental Science, University of Calicut)
  • Received : 2019.02.23
  • Accepted : 2021.05.31
  • Published : 2021.09.25

Abstract

In this work, the performance of a mixed matrix membrane in the removal of crystal violet from aqueous solutions is reported. This membrane was fabricated by adding a nanocomposite (fMWNTs/GO/MnO2 NC) synthesized with functionalized multi-walled carbon nanotubes, graphene oxide, and manganese dioxide nanoparticles, to polysulfone. Details pertaining to the preparation and characterization of the membrane, evaluation of its performance in the removal of crystal violet, and antifouling properties of the membrane are reported in this paper. The membranes were fabricated by embedding varying concentrations of fMWNTs/GO/MnO2 NC (from 0 to 0.3wt%) in the Psf matrix. Incorporation of fMWNTs/GO/MnO2 NC was found to enhance hydrophilicity, equilibrium water content, porosity, mean pore radius, pure water permeability and antifouling properties of the membrane. Analyses of surface morphology of the fabricated membranes revealed the presence of macro-voids in the matrix of the membrane after addition of fMWNTs/GO/MnO2 NC, resulting in an increase in pure water flux and permeability. It was observed that 0.1wt% is the optimum concentration of fMWNTs/GO/MnO2 NC in the Psf matrix since the membrane exhibited maximum hydrophilicity, equilibrium water content, porosity, pure water permeability and dye rejection at this concentration. Also, it was observed that the polysulfone membrane exhibited enhanced antifouling properties at this concentration of the nanocomposite.

Keywords

Acknowledgement

The financial support to the first author by the University Grants Commission (UGC) (Grant Number F.2-11/2009 (SA-1)), Govt. of India, is also gratefully acknowledged.

References

  1. Blanco, J.F., Sublet, J., Nguyen, Q.T. and Schaetzel, P. (2006), "Formation and morphology studies of different polysulfones-based membranes made by wet phase inversion process", J. Membr. Sci., 283(1-2), 27-37. https://doi.org/10.1016/j.memsci.2006.06.011.
  2. Boributh, S., Chanachai, A. and Jiraratananon, R. (2009), "Modification of PVDF membrane by chitosan solution for reducing protein fouling", J. Membr. Sci., 342(1-2), 97-104. https://doi.org/10.1016/j.memsci.2009.06.022.
  3. Bottino, A., Capannelli, G. and Comite, A. (2002), "Preparation and characterization of novel porous PVDF-ZrO2 composite membranes", Desalination, 146(1-3), 35-40. https://doi.org/10.1016/S0011-9164(02)00469-1.
  4. Choi, J.H., Jegal, J. and Kim, W.N. (2007), "Modification of performances of various membranes using MWNTs as a modifier" Macromol. Symp., 1(1), 249-250. https://doi.org/10.1002/masy.200750444.
  5. Dejardin, P. (2006), Proteins at Solid-Liquid Interfaces, Springer-Verlag, Berlin, Germany.
  6. Escobar, I. (2005), "Committee report: Recent advances and research needs in membrane fouling", J. Am. Water Works Ass., 97(8), 79-89. https://doi.org/10.1002/j.1551-8833.2005.tb07452.x.
  7. Evrim, C., Park, H. and Choi, H. (2011), "Carbon nanotube blended polyethersulfone membranes for fouling control in water treatment", Water Res., 45(1), 274-282. https://doi.org/10.1016/j.watres.2010.07.060.
  8. Gohari, R.J., Halakoo, E., Lau, W.J., Kassim, M.A., Matsuura, T. and Ismail, A.F. (2014), "Novel polyethersulfone (PES)/hydrous manganese dioxide (HMO) mixed matrix membranes with improved anti-fouling properties for oily wastewater treatment process", RSC Adv., 4(34), 17587-17596. https://doi.org/10.1039/C4RA00032C.
  9. Gryta, M. (2010), "Application of membrane distillation process for tap water purification", Membr. Water Treat., 1(1), 1-12. https://doi.org/10.12989/mwt.2010.1.1.001.
  10. Han M.J. and Nam, S.T. (2002), "Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane", J. Membr. Sci., 202(1-2), 55-61. https://doi.org/10.1016/S0376-7388(01)00718-9.
  11. Higuchi, A., Tamai, M., Tagawa, Y., Chang, Y. and Ling, Q.D. (2010), "Surface modification of polymeric membranes for low protein binding", Membr. Water Treat., 1(2), 103-120. https://doi.org/10.12989/mwt.2010.1.2.103.
  12. Huisman, I.H., Pradanos, P. and Hernandez, A. (2000), "The effect of protein-protein and protein-membrane interactions on membrane fouling in ultrafiltration", J. Membr. Sci., 179(1-2), 79-90. https://doi.org/10.1016/S0376-7388(00)00501-9.
  13. Julian, S.T., Hari, A., Volodymyr, Z.B., Anatoliy, F.B., Thomas, C.V., Merlin, L.B. and Volodymyr, V.T. (2008), "Effect of filler incorporation route on the properties of polysulfone- silver nanocomposite membranes of different porosities", J. Membr. Sci., 325(1), 58-68. https://doi.org/10.1016/j.memsci.2008.07.010.
  14. Kim J. and Van der Bruggen, B. (2010), "The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment", Environ Pollut., 158(7), 2335-2349. https://doi.org/10.1016/j.envpol.2010.03.024.
  15. Kim, S.H., Kwak, S.Y., Sohn, B.H. and Park, T.H. (2003), "Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem", J. Membr. Sci., 211(1), 157-165. https://doi.org/10.1016/j.envpol.2010.03.024.
  16. Ladan, E., Mokhtar, A., and Elmira, P. (2014), "Evaluation of Adsorption characteristics of multiwalled carbon nanotubes modified by a poly(propylene imine) dendrimer in single and multiple dye solutions: Isotherms, kinetics, and thermodynamics", J. Chem. Eng. Data, 375(1), 1-2. https://doi.org/10.1021/je400913z.
  17. Li, J.B., Zhu, J.W. and Zheng, M.S. (2007), "Morphologies and properties of poly(phthalazinone ether sulfone ketone) matrix ultrafiltration membranes with entrapped TiO2 nanoparticles", J. Appl. Polym. Sci., 103(6), 3623-3629. https://doi.org/10.1002/app.25428
  18. Li, J.F., Xu, Z.L., Yang, H., Yu, L.Y. and Liu, M. (2009), "Effect ofTiO2 nanoparticles on the surface morphology and performance of microporous PES membrane", Appl. Surf. Sci., 255(9), 4725-4732. https://doi.org/10.1016/j.apsusc.2008.07.139
  19. Maskan, F., Wiley, D.E., Johnston, L.P.M. and Clements, D.J. (2000), "Optimal design of reverse osmosis module networks", AIChE J., 46s(5), 946-954. https://doi.org/10.1002/aic.690460509.
  20. Merkel, T.C., Freeman, B.D., Spontak, R.J., He, Z., Pinnau, I., Meakin, P. and Hill, A.J. (2002) "Ultrapermeable, reverseselective nanocomposite membranes", Science, 296(5567), 519-522. https://doi.org/10.1126/science.1069580.
  21. Morao, A.I.C., Szymczyk, A., Fievet, P. and Alves, A.M.B. (2010), "Nanofiltration of multi-ionic solutions: Prediction of ions transport using the SEDE model", Membr. Water Treat., 1(2), 139-158. https://doi.org/10.12989/mwt.2010.1.2.139.
  22. Nandi, B.K., Das, B., Uppaluri, R., Purkait, M.K. (2010), "Preparation and characterization of inexpensive submicron range inorganic microfiltration membranes", Membr. Water Treat., 1(2), 121-137. https://doi.org/10.12989/mwt.2010.1.2.121.
  23. Peng, J., Su, Y., Shi, Q., Chen, W. and Jiang, Z. (2011), "Protein fouling resistant membrane prepared by amphiphilic pegylated polyethersulfone", Bioresource. Technol., 102(3), 2289-2295. https://doi.org/10.1016/j.biortech.2010.10.045.
  24. Pieracci, J., Crivello, J.V. and Belfort, G. (2002), "Increasing membrane permeability of UV-modified poly(ether sulfone) ultrafiltration membranes", J. Membr. Sci., 202(1-2), 1-16. https://doi.org/10.1016/S0376-7388(01)00624-X.
  25. Qiu, S., Wu, L., Pan, X., Zhang, L., Chen, H. and Gao, C. (2009), "Preparation and properties of functionalized carbon nanotube/PSF blend ultrafiltration membranes", J. Membr. Sci., 342(1-2), 165-172. https://doi.org/10.1016/j.memsci.2009.06.041.
  26. Rahimpour, A., Madaeni, S.S., Taheri, A.H. and Mansourpanah, Y. (2008), "Coupling TiO2 nanoparticles with UV irradiation for modification of polyethersulfone ultrafiltration membranes", J. Membr. Sci., 313(1-2), 158-169. https://doi.org/10.1016/j.memsci.2007.12.075.
  27. Razmjou, A., Mansouri, J. and Chen, V. (2011), "The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes", J. Membr. Sci., 378 (1-2), 73-84. https://doi.org/10.1016/j.memsci.2010.10.019.
  28. Roy, S., Ntim, S.A., Mitra, S. and Sirkar, K.K. (2011), "Facile fabrication of superior nanofiltration membranes from interfacially polymerized CNT-polymer composites", J. Membr. Sci., 375(1-2), 81-87. https://doi.org/10.1016/j.memsci.2011.03.012.
  29. Sablani, S., Goosen, M., Al-Belushi, R. and Wilf, M. (2001), "Concentration polarization in ultrafiltration and reverse osmosis: A critical review", Desalination, 141(3), 269-289. https://doi.org/10.1016/S0011-9164(01)85005-0.
  30. Swati, G., Prem, P.S., Hariom, G., Vaibhav, K. and Prafulla, K.J. (2014), "Preparation of graphene oxide nano-composite ionexchange membranes for desalination application", RSC Adv., 4, 24662-24670. https://doi.org/10.1039/C4RA02216E.
  31. Tanaka, Y. (2010), "A computer simulation of ion exchange membrane electrodialysis for concentration of seawater", Membr. Water Treat., 1(1), 13-37. http://doi.org/10.12989/mwt.2010.1.1.013.
  32. Vatanpour, V., Madaeni, S.S., Moradian, R., Zinadini, S. and Astinchap, B. (2011), "Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite", J. Membr. Sci., 375(1-2), 284-294. https://doi.org/10.1016/j.memsci.2011.03.055.
  33. Wang, F. and Tarabara, V.V. (2007), "Coupled effects of colloidal deposition and salt concentration polarization on reverse osmosis membrane performance", J. Membr. Sci., 293(1-2), 111-123. https://doi.org/10.1016/j.memsci.2007.02.003.
  34. Wu, H., Tang, B. and Wu, P. (2010), "Novel ultrafiltration membranes prepared from a multi-walled carbon nanotubes/polymer composite", J. Membr. Sci., 362(1-2), 374-383. https://doi.org/10.1016/j.memsci.2010.06.064.
  35. Xu, Z., Yu, L. and Han, L. (2009), "Polymer-nanoinorganic particles composite membranes: A brief overview", Front. Chem. Eng. China., 3(3), 318-329. https://doi.org/10.1007/s11705-009-0199-0.
  36. Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V. and Zangeneh, H. (2011), "Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates", J. Membr. Sci., 453, 292-301. https://doi.org/10.1016/j.memsci.2013.10.070.