DOI QR코드

DOI QR Code

Merging the cryptic genera Radicilingua and Calonitophyllum (Delesseriaceae, Rhodophyta): molecular phylogeny and taxonomic revision

  • Wolf, Marion A. (Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice) ;
  • Sciuto, Katia (Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice) ;
  • Maggs, Christine A. (Queen's University, Marine Laboratory) ;
  • Petrocelli, Antonella (Institute of Water Research (IRSA), CNR, Talassografico "A. Cerruti") ;
  • Cecere, Ester (Institute of Water Research (IRSA), CNR, Talassografico "A. Cerruti") ;
  • Buosi, Alessandro (Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice) ;
  • Sfriso, Adriano (Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice)
  • Received : 2021.02.18
  • Accepted : 2021.07.18
  • Published : 2021.09.15

Abstract

Radicilingua Papenfuss and Calonitophyllum Aregood are two small genera of the family Delesseriaceae that consist of only three and one taxonomically accepted species, respectively. The type species of these genera, Radicilingua thysanorhizans from England and Calonitophyllum medium from the Americas, are morphologically very similar, with the only recognized differences being vein size and procarp development. To date, only other two species were recognized inside the genus Radicilingua: R. adriatica and R. reptans. In this study, we analysed specimens of Radicilingua collected in the Adriatic and Ionian Sea (Mediterranean), including a syntype locality of R. adriatica (Trieste, northern Adriatic Sea), alongside material from near the type locality of R. thysanorhizans (Torpoint, Cornwall, UK). The sequences of the rbcL-5P gene fragment here produced represent the first molecular data available for the genus Radicilingua. Phylogenetic reconstruction showed that the specimens from the Adriatic and Ionian Seas were genetically distinct from the Atlantic R. thysanorhizans, even if morphologically overlapping with this species. A detailed morphological description of the Mediterranean specimens, together with an accurate literature search, suggested that they were distinct also from R. adriatica and R. reptans. For these reasons, a new species was here described to encompass the Mediterranean specimens investigated in this study: R. mediterranea Wolf, Sciuto & Sfriso. Moreover, in the rbcL-5P tree, sequences of the genera Radicilingua and Calonitophyllum grouped in a well-supported clade, distinct from the other genera of the subfamily Nitophylloideae, leading us to propose that Calonitophyllum medium should be transferred to Radicilingua.

Keywords

Acknowledgement

Funded by Provveditorato Interregionale Opere Pubbliche per il Veneto, Trentino Alto Adige e Friuli Venezia Giulia, through Consorzio Venezia Nuova and CORILA (Consortium for coordination of research activities concerning the Venice lagoon system)-Project "VENEZIA 2021." We acknowledge Giuseppe Portacci for his contribution to sampling and the anonymous reviewers for their useful suggestions.

References

  1. Aregood, C. C. 1975. A study of the red alga, Calonitophyllum medium (Hoyt) comb. nov. [= Hymenena media (Hoyt) Taylor]. Br. Phycol. J. 10:347-362. https://doi.org/10.1080/00071617500650371
  2. Bottalico, A., Alongi, G. & Perrone, C. 2016. Macroalgal diversity of Santa Cesarea-Castro (Salento Peninsula, southeastern Italy). An. Jardin Bot. Madrid 73:e042.
  3. Curiel, D., Bellemo, G. & Marzocchi, M. 1996. New records of marine algae in the Lagoon of Venice. Giorn. Bot. Ital. 130:352. https://doi.org/10.1080/11263509609439592
  4. Diaz-Tapia, P., Pasella, M. M., Verbruggen, H. & Maggs, C. A. 2019. Morphological evolution and classification of the red algal order Ceramiales inferred using plastid phylogenomics. Mol. Phylogenet. Evol. 137:76-85. https://doi.org/10.1016/j.ympev.2019.04.022
  5. Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792-1797. https://doi.org/10.1093/nar/gkh340
  6. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  7. Freshwater, D. W. & Rueness, J. 1994. Phylogenetic relationships of some European Gelidium (Gelidiales, Rhodophyta) species, based on rbcL nucleotide sequence analysis. Phycologia 33:187-194. https://doi.org/10.2216/i0031-8884-33-3-187.1
  8. Gallardo, T., Barbara, I., Afonso-Carrillo, J., Bermejo, R., Altamirano, M., Gomez Garreta, A., Barcelo Marti, M. C., Rull Lluch, J., Ballesteros, E. & De la Rosa, J. 2016. Nueva lista critica de las algas bentonicas marinas de Espana. A new checklist of benthic marine algae of Spain. Algas Bol. Inf. Soc. Esp. Ficol. 51:7-52.
  9. Gomez Garreta, A., Gallardo, T., Ribera, M. A., Cormaci, M., Furnari, G., Giaccone, G. & Boudouresque, C. F. 2001. Checklist of the Mediterranean seaweeds. III. Rhodophyceae Rabenh. 1. Ceramiales Oltm. Bot. Mar. 44:425-460. https://doi.org/10.1515/BOT.2001.051
  10. Guiry, M. D. & Guiry, G. M. 2020. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org. Accessed Nov 20, 2020.
  11. Holmes, E. M. 1873. New British algae. Grevillea 2:1-3.
  12. Hoyt, W. D. 1920. Marine algae of Beaufort, N. C., and adjacent regions. Bull. U. S. Bur. Fish. 36:367-556.
  13. Huve, P. & Riouall, R. 1970. Presence dans L'Etang de Berre (Bouches-du-Rhone) d'une algue Atlantique interressante, Radicilingua thysanorhizans (Holmes) Papenfuss (Rhodophycee, Ceramiale, Delesseriacee). Bull. Mus. Hist. Nat. Marseille 30:135-144.
  14. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549. https://doi.org/10.1093/molbev/msy096
  15. Kylin, H. 1924. Studien uber die Delesseriaceen. Acta Univ. Lund. 20:1-111.
  16. Kylin, H. 1956. Die Gattungen der Rhodophyceen. Gleerups, Lund, 673 pp.
  17. Lin, S. -M. & Fredericq, S. 2003. Nitophyllum hommersandii sp. nov. (Delesseriaceae, Rhodophyta) from Taiwan. Eur. J. Phycol. 38:143-151. https://doi.org/10.1080/0967026031000095534
  18. Lin, S. -M., Fredericq, S. & Hommersand, M. H. 2001. Systematics of the Delesseriaceae (Ceramiales, Rhodophyta) based on large subunit rDNA and rbcL sequences, including the Phycodryoideae subfam. nov. J. Phycol. 37:881-899. https://doi.org/10.1046/j.1529-8817.2001.01012.x
  19. Lin, S. -M., Fredericq, S. & Hommersand, M. H. 2004a. Augophyllum, a new genus of the Delesseriaceae (Rhodophyta) based on rbcL sequence analysis and cystocarp development. J. Phycol. 40:962-976. https://doi.org/10.1111/j.1529-8817.2004.04055.x
  20. Lin, S. -M., Hommersand, M. H. & Fredericq, S. 2004b. Two new species of Martensia (Delesseriaceae, Rhodophyta) from Kenting National Park, southern Taiwan. Phycologia 43:13-25. https://doi.org/10.2216/i0031-8884-43-1-13.1
  21. Maggs, C. A. & Hommersand, M. H. 1993. Seaweeds of the British Isles. Volume 1. Rhodophyta. Part 3A. Ceramiales. HMSO, London, 444 pp.
  22. Papenfuss, G. F. 1956. On the nomenclature of some Delesseriaceae. Taxon 5:158-162. https://doi.org/10.2307/1216649
  23. Petrocelli, A., Cecere, E. & Rubino, F. 2019. Successions of phytobenthos species in a Mediterranean transitional water system: the importance of long term observations. Nat. Conserv. 34:217-246. https://doi.org/10.3897/natureconservation.34.30055
  24. Rambaut, A. & Drummond, A. J. 2007. Tracer, version 1.5. Available from: http://beast.bio.ed.ac.uk/Tracer. Accessed Nov 20, 2020.
  25. Ronquist, F. & Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574. https://doi.org/10.1093/bioinformatics/btg180
  26. Schwarz, G. 1978. Estimating the dimension of a model. Ann. Stat. 6:461-464. https://doi.org/10.1214/aos/1176344136
  27. Serio, D., Furnari, G., Moro, I. & Sciuto, K. 2020. Molecular and morphological characterisation of Melanothamnus testudinis sp. nov. (Rhodophyta, Rhodomelaceae) and its distinction from Polysiphonia carettia. Phycologia 59:281-291. https://doi.org/10.1080/00318884.2020.1752531
  28. Sfriso, A. & Curiel, D. 2007. Check-list of marine seaweeds recorded in the last 20 years in Venice lagoon and a comparison with the previous records. Bot. Mar. 50:22-58. https://doi.org/10.1515/BOT.2007.004
  29. Taylor, W. R. 1960. Marine algae of the eastern tropical and subtropical coasts of the Americas. The University of Michigan Press, Ann Arbor, MI, 870 pp.
  30. Wagner, F. S. 1954. Contributions to the morphology of the Delesseriaceae. Univ. Calif. Publ. Bot. 27:279-346.
  31. Wolf, M. A., Buosi, A., Juhmani, A. -S. F. & Sfriso, A. 2018. Shellfish import and hull fouling as vectors for new red algal introductions in the Venice Lagoon. Estuar. Coast. Shelf Sci. 215:30-38. https://doi.org/10.1016/j.ecss.2018.09.028
  32. Wolf, M. A., Sciuto, K., Maggs, C. A., de Barros-Barreto, M. B. B., Andreoli, C. & Moro, I. 2011. Ceramium Roth (Ceramiales, Rhodophyta) from Venice lagoon (Adriatic Sea, Italy): comparative studies of Mediterranean and Atlantic taxa. Taxon 60:1584-1595. https://doi.org/10.1002/tax.606004