DOI QR코드

DOI QR Code

Mechanical Properties and Ideal Tensile Strengths of Groups IV and V Transition Metal Carbides Using First-principles Calculations

제1원리 계산을 이용한 IV, V족 전이금속 탄화물의 기계적 특성 및 이론강도 연구

  • Kim, Myungjae (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Jiwoo (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Jiwoong (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 김명재 (숭실대학교 유기신소재파이버공학과) ;
  • 김지우 (숭실대학교 유기신소재파이버공학과) ;
  • 김지웅 (숭실대학교 유기신소재파이버공학과)
  • Received : 2021.07.27
  • Accepted : 2021.08.16
  • Published : 2021.08.31

Abstract

We investigated the elastic and mechanical properties of Groups IV and V transition metal carbides (TiC, VC, ZrC, NbC, HfC, and TaC) via first-principles calculations. We performed precise convergence tests to obtain reliable results. The results for the equilibrium structure of the carbide were in good agreement with previous results, indicating the reliability of the results. The Group IV carbides (TiC, ZrC, and HfC) exhibited a higher covalent bonding nature than the Group V carbides (VC, NbC, and TaC); thus, they had a higher brittleness than Group V carbides. Although the covalent bonding nature of the Group V carbides was low, they exhibited higher elasticity and hardness than Group IV carbides, except for HfC. In addition, the ideal strength of the carbides was investigated using highly deformed models. TaC and ZrC had the highest and lowest ultimate tensile strengths, respectively.

Keywords

Acknowledgement

이 연구는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. NRF-2020R1F1A1071104)과 2020년도 정부(산업통산자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012770, 2020년 산업혁신인재성장지원사업).

References

  1. H. Holleck, "Material Selection for Hard Coatings", J. Vac. Sci. Technol. A., 1986, 4, 2661-2669. https://doi.org/10.1116/1.573700
  2. S. T. Oyama, "Pacific Rim Chemical, the Chemistry of Transition Metal Carbides and Nitrides", Blackie Academic & Professional, London, 1996, p.534.
  3. L. E. Toth, "Transition Metal Carbides and Nitrides", Cambridge Academic Press, New York, 1971, p.536.
  4. G. D'Urso, C. Giardini, S. Lorenzi, M. Quarto, D. Sciti, and L. Silvestroni, "Micro-EDM Milling of Zirconium Carbide Ceramics", Precis Eng., 2020, 65, 156-163. https://doi.org/10.1016/j.precisioneng.2020.06.002
  5. M.-H. Lin, "Synthesis of Nanophase Tungsten Carbide by Electrical Discharge Machining", Ceram. Int., 2005, 31, 1109-1115. https://doi.org/10.1016/j.ceramint.2004.12.004
  6. H. Mohit and V. A. M. Selvan, "Physical and Thermomechanical Characterization of the Novel Aluminum Silicon Carbidereinforced Polymer Nanocomposites", Iran Polym. J., 2019, 28, 823-837. https://doi.org/10.1007/s13726-019-00746-y
  7. A. Sayir, "Carbon Fiber Reinforced Hafnium Carbide Composite", J. Mater. Sci., 2004, 39, 5995-6003. https://doi.org/10.1023/B:JMSC.0000041696.64055.8c
  8. J. C. Grossman, A. Mizel, M. Cote, M. L. Cohen, and S. G. Louie, "Transition Metals and Their Carbides and Nitrides: Trends in Electronic and Structural Properties", Phys. Rev. Lett. B., 1999, 60, 6343-6347. https://doi.org/10.1103/PhysRevB.60.6343
  9. G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for Ab Initio Total-energy Calculations Using a Plane-wave Basis Set", Phys. Rev. B. Condens. Matter., 1996, 54, 11169-11186. https://doi.org/10.1103/PhysRevB.54.11169
  10. G. Kresse and J. Hafner, "Ab Initio Molecular-dynamics Simulation of the Liquid-metal-amorphous-semiconductor Transition in Germanium", Phys. Rev. B. Condens. Matter., 1994, 49, 14251-14269. https://doi.org/10.1103/PhysRevB.49.14251
  11. G. Kresse and J. Furthmuller, "Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set", Comput. Mater. Sci., 1996, 6, 15-50. https://doi.org/10.1016/0927-0256(96)00008-0
  12. J. P. Perdew, K. Burke, and M. Ernzerhof, "Perdew, Burke, and Ernzerhof Reply", Phys. Rev. Lett., 1998, 80, 891. https://doi.org/10.1103/PhysRevLett.80.891
  13. J. Kim, M. Kim, K. M. Roh, and I. Kang, "Bond Characteristics, Mechanical Properties, and High-temperature Thermal Conductivity of (Hf1-xTax)C Composites", J. Am. Ceram. Soc., 2019, 102, 6298-6308. https://doi.org/10.1111/jace.16466
  14. J. Kim and S. Kang, "Elastic and Thermo-physical Properties of TiC, TiN, and Their Intermediate Composition Alloys Using Ab Initio Calculations", J. Alloy. Compd., 2012, 528, 20-27. https://doi.org/10.1016/j.jallcom.2012.02.124
  15. H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin-zone Integrations", Phys. Rev. B., 1976, 13, 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188
  16. K. K. Chawla, "Mechanical Behavior of Material", 2nd Ed., Cambridge Academic Press, New York, 1942, p.856.
  17. W. Voigt, "Lehrbuch der Kristallphysik", Teubner, Leipzig, 1928, p.979.
  18. A. Reuss, "Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle", Z. Angew. Math. Mech., 1929, 9, 49-58. https://doi.org/10.1002/zamm.19290090104
  19. R. Hill, "The Elastic Behaviour of a Crystalline Aggregate", Proc. Phys. Soc., 1952, 65, 349-354. https://doi.org/10.1088/0370-1298/65/5/307
  20. N. Bohr, "On the Constitution of Atoms and Molecules", Lond. Edinb. Dubl. Phil. Mag., 2009, 26, 1-25.
  21. M. J. Gillan, "Calculation of the Vacancy Formation Energy in Aluminium", J. Phys. Condens. Matter., 1989, 1, 689-711. https://doi.org/10.1088/0953-8984/1/4/005
  22. M. A. Turchanin and P. G. Agraval, "Cohesive Energy, Properties, and Formation Energy of Transition Metal Alloys", Powder Metall. Met. Ceram., 2008, 47 26-39. https://doi.org/10.1007/s11106-008-0006-3
  23. J. Haglund, G. Grimvall, T. Jarlborg, and A. F. Guillermet, "Band Structure and Cohesive Properties of 3d-transitionmetal Carbides and Nitrides with the NaCl-type Structure", Phys. Rev. B. Condens. Matter., 1991, 43, 14400-14408. https://doi.org/10.1103/PhysRevB.43.14400
  24. S. Echeverri Restrepo, D. Di Stefano, M. Mrovec, and A. T. Paxton, "Density Functional Theory Calculations of Ironvanadium Carbide Interfaces and the Effect of Hydrogen", Int. J. Hydrog. Energy, 2020, 45, 2382-2389. https://doi.org/10.1016/j.ijhydene.2019.11.102
  25. J. Kim and Y. J. Suh, "Temperature- and Pressure-dependent Elastic Properties, Thermal Expansion Ratios, and Minimum Thermal Conductivities of ZrC, ZrN, and Zr(C0.5N0.5)", Ceram. Int., 2017, 43, 12968-12974. https://doi.org/10.1016/j.ceramint.2017.06.195
  26. A. Fernandez Guillermet, J. Haglund, and G. Grimvall, "Cohesive Properties of 4d-transition-metal Carbides and Nitrides in the NaCl-type Structure", Phys. Rev. B. Condens. Matter., 1992, 45, 11557-11567. https://doi.org/10.1103/PhysRevB.45.11557
  27. E. K. Storms and N. H. Krikorian, "The Niobium-Niobium Carbide System", J. Phys. Chem., 2002, 64, 1471-1477. https://doi.org/10.1021/j100839a029
  28. C. P. Kempter, "Debye Temperatures of Some Metal Monocarbides", Phys. Status Solidi. B., 1969, 36, 137-139. https://doi.org/10.1002/pssb.19690360260
  29. J. Kim, H. Kwon, B. Kim, and Y. J. Suh, "Finite Temperature Thermal Expansion and Elastic Properties of (Hf1-xTax)C Ultrahigh Temperature Ceramics", Ceram. Int., 2019, 45, 10805-10809. https://doi.org/10.1016/j.ceramint.2019.02.155
  30. A. F. Guillermet, J. Haglund, and G. Grimvall, "Cohesive Properties and Electronic Structure of 5d-transition-metal Carbides and Nitrides in the NaCl Structure", Phys. Rev. B. Condens. Matter., 1993, 48, 11673-11684. https://doi.org/10.1103/PhysRevB.48.11673
  31. F. Mouhat and F. X. Coudert, "Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems", Phys. Rev. B., 2014, 90, 224104. https://doi.org/10.1103/PhysRevB.90.224104
  32. F. Moitzi, D. Sopu, D. Holec, D. Perera, N. Mousseau, and J. Eckert, "Chemical Bonding Effects on the Brittle-to-ductile Transition in Metallic Glasses", Acta Materialia, 2020, 188, 273-281. https://doi.org/10.1016/j.actamat.2020.02.002
  33. S. F. Pugh, "XCII. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals", Philos. Mag., 2009, 45, 823-843. https://doi.org/10.1080/14786440808520496