Acknowledgement
이 연구는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원(No. NRF-2020R1F1A1071104)과 2020년도 정부(산업통산자원부)의 재원으로 한국산업기술진흥원의 지원을 받아 수행된 연구임(P0012770, 2020년 산업혁신인재성장지원사업).
References
- H. Holleck, "Material Selection for Hard Coatings", J. Vac. Sci. Technol. A., 1986, 4, 2661-2669. https://doi.org/10.1116/1.573700
- S. T. Oyama, "Pacific Rim Chemical, the Chemistry of Transition Metal Carbides and Nitrides", Blackie Academic & Professional, London, 1996, p.534.
- L. E. Toth, "Transition Metal Carbides and Nitrides", Cambridge Academic Press, New York, 1971, p.536.
- G. D'Urso, C. Giardini, S. Lorenzi, M. Quarto, D. Sciti, and L. Silvestroni, "Micro-EDM Milling of Zirconium Carbide Ceramics", Precis Eng., 2020, 65, 156-163. https://doi.org/10.1016/j.precisioneng.2020.06.002
- M.-H. Lin, "Synthesis of Nanophase Tungsten Carbide by Electrical Discharge Machining", Ceram. Int., 2005, 31, 1109-1115. https://doi.org/10.1016/j.ceramint.2004.12.004
- H. Mohit and V. A. M. Selvan, "Physical and Thermomechanical Characterization of the Novel Aluminum Silicon Carbidereinforced Polymer Nanocomposites", Iran Polym. J., 2019, 28, 823-837. https://doi.org/10.1007/s13726-019-00746-y
- A. Sayir, "Carbon Fiber Reinforced Hafnium Carbide Composite", J. Mater. Sci., 2004, 39, 5995-6003. https://doi.org/10.1023/B:JMSC.0000041696.64055.8c
- J. C. Grossman, A. Mizel, M. Cote, M. L. Cohen, and S. G. Louie, "Transition Metals and Their Carbides and Nitrides: Trends in Electronic and Structural Properties", Phys. Rev. Lett. B., 1999, 60, 6343-6347. https://doi.org/10.1103/PhysRevB.60.6343
- G. Kresse and J. Furthmuller, "Efficient Iterative Schemes for Ab Initio Total-energy Calculations Using a Plane-wave Basis Set", Phys. Rev. B. Condens. Matter., 1996, 54, 11169-11186. https://doi.org/10.1103/PhysRevB.54.11169
- G. Kresse and J. Hafner, "Ab Initio Molecular-dynamics Simulation of the Liquid-metal-amorphous-semiconductor Transition in Germanium", Phys. Rev. B. Condens. Matter., 1994, 49, 14251-14269. https://doi.org/10.1103/PhysRevB.49.14251
- G. Kresse and J. Furthmuller, "Efficiency of Ab-initio Total Energy Calculations for Metals and Semiconductors Using a Plane-wave Basis Set", Comput. Mater. Sci., 1996, 6, 15-50. https://doi.org/10.1016/0927-0256(96)00008-0
- J. P. Perdew, K. Burke, and M. Ernzerhof, "Perdew, Burke, and Ernzerhof Reply", Phys. Rev. Lett., 1998, 80, 891. https://doi.org/10.1103/PhysRevLett.80.891
- J. Kim, M. Kim, K. M. Roh, and I. Kang, "Bond Characteristics, Mechanical Properties, and High-temperature Thermal Conductivity of (Hf1-xTax)C Composites", J. Am. Ceram. Soc., 2019, 102, 6298-6308. https://doi.org/10.1111/jace.16466
- J. Kim and S. Kang, "Elastic and Thermo-physical Properties of TiC, TiN, and Their Intermediate Composition Alloys Using Ab Initio Calculations", J. Alloy. Compd., 2012, 528, 20-27. https://doi.org/10.1016/j.jallcom.2012.02.124
- H. J. Monkhorst and J. D. Pack, "Special Points for Brillouin-zone Integrations", Phys. Rev. B., 1976, 13, 5188-5192. https://doi.org/10.1103/PhysRevB.13.5188
- K. K. Chawla, "Mechanical Behavior of Material", 2nd Ed., Cambridge Academic Press, New York, 1942, p.856.
- W. Voigt, "Lehrbuch der Kristallphysik", Teubner, Leipzig, 1928, p.979.
- A. Reuss, "Berechnung der Fliessgrenze von Mischkristallen auf Grund der Plastizitatsbedingung fur Einkristalle", Z. Angew. Math. Mech., 1929, 9, 49-58. https://doi.org/10.1002/zamm.19290090104
- R. Hill, "The Elastic Behaviour of a Crystalline Aggregate", Proc. Phys. Soc., 1952, 65, 349-354. https://doi.org/10.1088/0370-1298/65/5/307
- N. Bohr, "On the Constitution of Atoms and Molecules", Lond. Edinb. Dubl. Phil. Mag., 2009, 26, 1-25.
- M. J. Gillan, "Calculation of the Vacancy Formation Energy in Aluminium", J. Phys. Condens. Matter., 1989, 1, 689-711. https://doi.org/10.1088/0953-8984/1/4/005
- M. A. Turchanin and P. G. Agraval, "Cohesive Energy, Properties, and Formation Energy of Transition Metal Alloys", Powder Metall. Met. Ceram., 2008, 47 26-39. https://doi.org/10.1007/s11106-008-0006-3
- J. Haglund, G. Grimvall, T. Jarlborg, and A. F. Guillermet, "Band Structure and Cohesive Properties of 3d-transitionmetal Carbides and Nitrides with the NaCl-type Structure", Phys. Rev. B. Condens. Matter., 1991, 43, 14400-14408. https://doi.org/10.1103/PhysRevB.43.14400
- S. Echeverri Restrepo, D. Di Stefano, M. Mrovec, and A. T. Paxton, "Density Functional Theory Calculations of Ironvanadium Carbide Interfaces and the Effect of Hydrogen", Int. J. Hydrog. Energy, 2020, 45, 2382-2389. https://doi.org/10.1016/j.ijhydene.2019.11.102
- J. Kim and Y. J. Suh, "Temperature- and Pressure-dependent Elastic Properties, Thermal Expansion Ratios, and Minimum Thermal Conductivities of ZrC, ZrN, and Zr(C0.5N0.5)", Ceram. Int., 2017, 43, 12968-12974. https://doi.org/10.1016/j.ceramint.2017.06.195
- A. Fernandez Guillermet, J. Haglund, and G. Grimvall, "Cohesive Properties of 4d-transition-metal Carbides and Nitrides in the NaCl-type Structure", Phys. Rev. B. Condens. Matter., 1992, 45, 11557-11567. https://doi.org/10.1103/PhysRevB.45.11557
- E. K. Storms and N. H. Krikorian, "The Niobium-Niobium Carbide System", J. Phys. Chem., 2002, 64, 1471-1477. https://doi.org/10.1021/j100839a029
- C. P. Kempter, "Debye Temperatures of Some Metal Monocarbides", Phys. Status Solidi. B., 1969, 36, 137-139. https://doi.org/10.1002/pssb.19690360260
- J. Kim, H. Kwon, B. Kim, and Y. J. Suh, "Finite Temperature Thermal Expansion and Elastic Properties of (Hf1-xTax)C Ultrahigh Temperature Ceramics", Ceram. Int., 2019, 45, 10805-10809. https://doi.org/10.1016/j.ceramint.2019.02.155
- A. F. Guillermet, J. Haglund, and G. Grimvall, "Cohesive Properties and Electronic Structure of 5d-transition-metal Carbides and Nitrides in the NaCl Structure", Phys. Rev. B. Condens. Matter., 1993, 48, 11673-11684. https://doi.org/10.1103/PhysRevB.48.11673
- F. Mouhat and F. X. Coudert, "Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems", Phys. Rev. B., 2014, 90, 224104. https://doi.org/10.1103/PhysRevB.90.224104
- F. Moitzi, D. Sopu, D. Holec, D. Perera, N. Mousseau, and J. Eckert, "Chemical Bonding Effects on the Brittle-to-ductile Transition in Metallic Glasses", Acta Materialia, 2020, 188, 273-281. https://doi.org/10.1016/j.actamat.2020.02.002
- S. F. Pugh, "XCII. Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals", Philos. Mag., 2009, 45, 823-843. https://doi.org/10.1080/14786440808520496