DOI QR코드

DOI QR Code

디지털 뉴딜 정책에 대한 언론 보도량과 주식 시장의 동태적 관계 분석: 4차산업혁명 관련 기업을 중심으로

An Analysis of the Dynamics between Media Coverage and Stock Market on Digital New Deal Policy: Focusing on Companies Related to the Fourth Industrial Revolution

  • 투고 : 2021.04.22
  • 심사 : 2021.08.18
  • 발행 : 2021.08.31

초록

제4차 산업혁명의 확산과 코로나 19의 장기화로 인한 사회적 변화의 기로에서 한국 정부는 2020년 7월 디지털 뉴딜 정책을 발표했다. 디지털 뉴딜 정책은 데이터, 네트워크, 인공지능 기술을 중심으로 공공분야 및 산업의 디지털 전환을 가속화함으로써 새로운 비즈니스를 창출하는 것을 주요 과제로 삼고 있다. 그러나 급변하는 사회환경에서 기술의 미래 이익에 대한 정보비대칭은 정책의 방향과 효과에 대한 대중의 분석 능력의 차이를 야기할 수 있으며, 이로 인해 정책의 실질적 효과에 대한 불확실성이 발생하게 된다. 한편, 언론은 정부 정책을 대중에 전파하는 전달자 역할을 통해 담론 형성을 주도하며, 보도를 통해 특정 이슈에 대한 제반 지식을 대중에게 제공하는 역할을 한다. 즉, 특정 정책에 대한 언론의 보도량이 증가할수록 이슈 집중도는 높아지며, 이를 통해 대중의 의사결정에도 영향을 미치게 된다. 따라서 본 연구의 목적은 한국 정부의 디지털 뉴딜 정책에 대한 언론 보도량과 주식 시장의 동태적 관계를 그랜저 인과관계(Granger causality), 충격반응함수, 분산분해분석을 이용하여 검증하는 것이다. 이를 위해 디지털 뉴딜 정책에 대한 언론 보도량, 키워드 검색량과 KOSDAQ 상장 기업 중 디지털 뉴딜 정책과 관련이 있는 디지털 기술 기반 기업들의 일일주식회전율, 일일주가수익률, EWMA 변동성을 변수로 설정하였으며, 정책발표 시점 전후 60 거래일, 총 120 거래일 간의 데이터를 이용했다. 분석 결과, 언론 보도량은 키워드 검색량, 일일주식회전율, EWMA 변동성과 양방향 그랜저 인과관계가 존재하였으며, 언론 보도량의 증가는 디지털 뉴딜 정책에 대한 키워드 검색량에 높은 영향을 미치는 것으로 나타났다. 또한 언론 보도량에 대한 충격반응분석 결과 EWMA 변동성을 큰 폭으로 하락시키는 양상을 보였으며, 시간이 지날수록 영향력이 점차 증가하며 주식 시장의 변동성을 완화시키는 역할을 하는 것으로 나타났다. 본 연구의 분석 결과를 토대로 디지털 뉴딜에 대한 언론 보도량은 주식 시장과 유의한 동태적 관계가 있음을 확인할 수 있었다.

In the crossroads of social change caused by the spread of the Fourth Industrial Revolution and the prolonged COVID-19, the Korean government announced the Digital New Deal policy on July 14, 2020. The Digital New Deal policy's primary goal is to create new businesses by accelerating digital transformation in the public sector and industries around data, networks, and artificial intelligence technologies. However, in a rapidly changing social environment, information asymmetry of the future benefits of technology can cause differences in the public's ability to analyze the direction and effectiveness of policies, resulting in uncertainty about the practical effects of policies. On the other hand, the media leads the formation of discourse through communicators' role to disseminate government policies to the public and provides knowledge about specific issues through the news. In other words, as the media coverage of a particular policy increases, the issue concentration increases, which also affects public decision-making. Therefore, the purpose of this study is to verify the dynamic relationship between the media coverage and the stock market on the Korean government's digital New Deal policy using Granger causality, impulse response functions, and variance decomposition analysis. To this end, the daily stock turnover ratio, daily price-earnings ratio, and EWMA volatility of digital technology-based companies related to the digital new deal policy among KOSDAQ listed companies were set as variables. As a result, keyword search volume, daily stock turnover ratio, EWMA volatility have a bi-directional Granger causal relationship with media coverage. And an increase in media coverage has a high impact on keyword search volume on digital new deal policies. Also, the impulse response analysis on media coverage showed a sharp drop in EWMA volatility. The influence gradually increased over time and played a role in mitigating stock market volatility. Based on this study's findings, the amount of media coverage of digital new deals policy has a significant dynamic relationship with the stock market.

키워드

과제정보

This work was supported by the Ministry of Education of the Republic of Korea and the National Research Foundation of Korea(NRF-2020S1A3A2A02093277).

참고문헌

  1. Ayele, A. W., Gabreyohannes, E., and Tesfay, Y. Y., "Macroeconomic determinants of volatility for the gold price in Ethiopia: the application of GARCH and EWMA volatility models," Global Business Review, Vol. 18, No. 2, pp. 308-326, 2017. https://doi.org/10.1177/0972150916668601
  2. Bank, M., Larch, M., and Peter, G., "Google search volume and its influence on liquidity and returns of German stocks," Financial Markets and Portfolio Management, Vol. 25, No. 3, pp. 239-264, 2011. https://doi.org/10.1007/s11408-011-0165-y
  3. Campbell, J. Y., Lettau, M., Malkiel, B. G., and Xu, Y., "Have individual stocks become more volatile? An empirical exploration of idiosyncratic risk," The Journal of Finance, Vol. 56, No. 1, pp. 1-43, 2001. https://doi.org/10.1111/0022-1082.00318
  4. Choi, B. S., Woo, J. U., and Park, Y. S., "Locally powerful unit-root test," Communications for Statistical Applications and Methods, Vol. 15, No. 4, pp. 531-542, 2008. https://doi.org/10.5351/CKSS.2008.15.4.531
  5. Da, Z., Engelberg, J., and Gao, P., "In search of attention," The Journal of Finance, Vol. 66, No. 5, pp. 1461-1499, 2011. https://doi.org/10.1111/j.1540-6261.2011.01679.x
  6. Daniel, K., Hirshleifer, D,. and Subrahmanyam, A., "Investor psychology and security market under-and overreactions," The Journal of Finance, Vol. 53, No. 6, pp. 1839-1885, 1998. https://doi.org/10.1111/0022-1082.00077
  7. De Vreese, C. H. and Boomgaarden, H., "News, political knowledge and participation: The differential effects of news media exposure on political knowledge and participation," Acta Politica, Vol. 41, No. 4, pp. 317-341, 2006. https://doi.org/10.1057/palgrave.ap.5500164
  8. Engle, R. F. and Granger, C. W., "Co-integration and error correction: representation, estimation, and testing," Econometrica, Vol. 55, No. 2, pp. 251-276, 1987. https://doi.org/10.2307/1913236
  9. Entman, R. M., "Framing bias: Media in the distribution of power," Journal of Communication, Vol. 57, No. 1, pp. 163-173, 2007. https://doi.org/10.1111/j.1460-2466.2006.00336.x
  10. Entman, R. M., "Theorizing mediated public diplomacy: The US case," The International Journal of Press/Politics, Vol. 13, No. 2, pp. 87-102, 2008. https://doi.org/10.1177/1940161208314657
  11. Fama, E. F., "Efficient capital markets: A review of theory and empirical work," The Journal of Finance, Vol. 25, No. 2, pp. 383-417, 1970. https://doi.org/10.1111/j.1540-6261.1970.tb00518.x
  12. Granger, C. W., "Investigating causal relations by econometric models and crossspectral methods," Econometrica, Vol. 37, No. 3, pp. 424-438, 1969. https://doi.org/10.2307/1912791
  13. Heston, S. L. and Sinha, N. R., "News vs. sentiment: Predicting stock returns from news stories," Financial Analysts Journal, Vol. 73, No. 3, pp. 67-83, 2017. https://doi.org/10.2469/faj.v73.n3.3
  14. Hong, H. and Stein, J. C., "A unified theory of underreaction, momentum trading, and overreaction in asset markets," The Journal of Finance, Vol. 54, No. 6, pp. 2143-2184, 1999. https://doi.org/10.1111/0022-1082.00184
  15. Kahneman, D. and Tversky, A., "Prospect theory: An analysis of decision under risk," Econometrica, Vol. 47, No. 2, pp. 263-292, 1979. https://doi.org/10.2307/1914185
  16. Kim, D. and Lee, Y., "News based stock market sentiment lexicon acquisition using Word2Vec," The Journal of Bigdata, Vol. 3, No. 1, pp. 13-20, 2018. https://doi.org/10.36498/kbigdt.2018.3.1.13
  17. Kim, J. G., "An empirical analysis on the relationship between stock price, interest rate, price index and housing price using VAR model," Journal of Distribution Science, Vol. 11, No. 10, pp. 63-72, 2013. https://doi.org/10.15722/jds.11.10.201310.63
  18. Kim, M., Ryu, J., Cha, D. and Sim, M. K., "Stock Price Prediction Using Sentiment Analysis: from "Stock Discussion Room" in Naver," The Journal of Society for eBusiness Studies, Vol. 25, No. 4, pp. 61-75, 2020.
  19. Kim, R., "An empirical study on the relation between search volume, investors trading, and stock returns," Korean Journal of Financial Engineering, Vol. 17, No. 2, pp. 53-85, 2018. https://doi.org/10.35527/kfedoi.2018.17.2.003
  20. Kim, S. J. and Cheong, Y. G., "A study on the characteristics of political bias of Korean press: Focused on the analysis of 19th presidential election coverage," Korean Journal of Communication & Information, Vol. 88, pp. 110-145, 2018. https://doi.org/10.46407/kjci.2018.04.88.110
  21. Kim, S. S., Nam, D. W., Jo, H., and Kim, S. H., "A study on the relation of web news and stock price," Journal of Information Technology Services, Vol. 11, No. 3, pp. 191-203, 2012. https://doi.org/10.9716/KITS.2012.11.3.191
  22. Kim, Y., Kim, N., and Jeong, S. R., "Stock-index invest model using news big data opinion mining," Journal of Intelligence and Information Systems, Vol. 18, No. 2, pp. 143-156, 2012. https://doi.org/10.13088/JIIS.2012.18.2.143
  23. Kim, Y. M., Jeong, S. J., and Lee, S. J., "A study on the stock market prediction based on sentiment analysis of social media," Entrue Journal of Information Technology, Vol. 13, No. 3, pp. 59-59, 2014.
  24. Ko, K. S., Paek, M. Y. and Ha, Y. J., "The dynamics of market information, equity fund returns, and its cash flows: Individual fund level analysis using structural vector auto-regression," Korean Journal of Financial Studies, Vol. 40, No. 4, pp. 609-643, 2011.
  25. Lee, J. H., "The effect of news audience's biased media perception on their evaluation of the media's fairness: A comparative analysis among congenial, neutral, and hostile media," Korean Journal of Journalism & Communication Studies, Vol. 59, No. 1, pp. 7-36, 2015.
  26. Lee, J. W., Hong, J. B., and Jeong, H. J., "Vitalizing KONEX through reducing informational asymmetry," Korean Journal of Financial Studies, Vol. 43, No. 1, pp. 305-325, 2014.
  27. Lee, W. and Roh, S., "From 'What to Think about' to 'When to Think': A time series analysis on the temporal gap in the Interinfluences among the real-world economy, economic news, and mass economic judgment," Korean Journal of Journalism and Communication Studies, Vol. 52, No. 5, pp. 320-345, 2008.
  28. Li, X., Xie, H., Chen, L., Wang, J., and Deng, X., "News impact on stock price return via sentiment analysis," Knowledge-Based Systems, Vol. 69, pp. 14-23, 2014. https://doi.org/10.1016/j.knosys.2014.04.022
  29. Liang, X., "Mining associations between web stock news volumes and stock prices," International Journal of Systems Science, Vol. 37, No. 13, pp. 919-930, 2006. https://doi.org/10.1080/00207720600891562
  30. Liu, D. Y., Chen, S. W., and Chou, T. C., "Resource fit in digital transformation: Lessons learned from the CBC Bank global e-banking project," Management Decision, Vol. 49, No. 10, pp. 1728-1742, 2011. https://doi.org/10.1108/00251741111183852
  31. Liu, L. and Zhang, T., "Economic policy uncertainty and stock market volatility," Finance Research Letters, Vol. 15, pp. 99-105, 2015. https://doi.org/10.1016/j.frl.2015.08.009
  32. Moon, G. H., "The relation between price changes, volatilities and trading volume changes in Korean Stock Market," Korean Journal of Business Administration, Vol. 19, No. 4, pp. 1441-1460, 2006.
  33. Nambisan, S., Wright, M. and Feldman, M., "The digital transformation of innovation and entrepreneurship: Progress, challenges and key themes," Research Policy, Vol. 48, No. 8, pp. 103773, 2019. https://doi.org/10.1016/j.respol.2019.03.018
  34. Park, K. M., "A research on change of issue attention by competition of public issues," Korean Public Administration Review, Vol. 36, No. 3, pp. 57-75, 2002.
  35. Park, S., Lee, I. and Lee, Y. G., "A perspective on the causality between fluctuation of international crude oil price and household consumption change in use of Vector Auto-Regression(VAR)," Innovation Studies, Vol. 12, No. 1, pp. 143-166, 2017. https://doi.org/10.46251/innos.2017.02.12.1.143
  36. Pastor, L. and Veronesi, P., "Was there a Nasdaq bubble in the late 1990s?," Journal of Financial Economics, Vol. 81, No. 1, pp. 61-100, 2006. https://doi.org/10.1016/j.jfineco.2005.05.009
  37. Pastor, L. and Veronesi, P., "Uncertainty about government policy and stock prices," The Journal of Finance, Vol. 67, No. 4, pp. 1219-1264, 2012. https://doi.org/10.1111/j.1540-6261.2012.01746.x
  38. Preis, T., Reith, D., and Stanley, H. E., "Complex dynamics of our economic life on different scales: insights from search engine query data," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 368, No. 1933, pp. 5707-5719, 2010. https://doi.org/10.1098/rsta.2010.0284
  39. Schoenherr, D., "Political connections and allocative distortions," The Journal of Finance, Vol. 74, No. 2, pp. 543-586, 2019. https://doi.org/10.1111/jofi.12751
  40. Sims, C. A., "Macroeconomics and reality," Econometrica, Vol. 48, No. 1, pp. 1-48. 1980. https://doi.org/10.2307/1912017
  41. Yun, S. Y., Ku, B., and Eom, Y. H., "Empirical investigation on the relationship of firm-volatility and the cross-section of stock returns," Asian Review of Financial Research, Vol. 24, No. 1, pp. 91-131, 2011.