DOI QR코드

DOI QR Code

Effect of Irrigation Amounts on Growth and Yield of Rice in Desert Climates

인공사막환경에서 벼 재배시 관개량에 따른 생육 및 수량 특성 변화

  • Jung, Ki-Youl (National Institute of Crop Science, RDA) ;
  • Lee, Sang-Hun (National Institute of Crop Science, RDA) ;
  • Jeong, Jae-Hyeok (National Institute of Crop Science, RDA) ;
  • Chun, Hyen-Chung (National Institute of Crop Science, RDA) ;
  • Oh, Seung-ka (Gyeongsang National University of Science & Technology) ;
  • Jeon, Seung-ho (Department of Agricultural Life Science, College of Life Science and Natural Resources, Sunchon National University)
  • 정기열 (농촌진흥청 국립식량과학원) ;
  • 이상훈 (농촌진흥청 국립식량과학원) ;
  • 정재혁 (농촌진흥청 국립식량과학원) ;
  • 전현정 (농촌진흥청 국립식량과학원) ;
  • 오승가 (경상국립대학교 식물자원학과) ;
  • 전승호 (순천대학교 생명산업과학대학 농생명과학과)
  • Received : 2021.04.14
  • Accepted : 2021.07.19
  • Published : 2021.09.01

Abstract

There is a growing interest in rice cultivation on farms with irrigation facilities in desert climates. We investigated the growth characteristics and yields of two rice cultivars (FL478 and Asemi) irrigated at field capacities (FCs) of 80%, 100%, and 120% in a lysimeter with coarse sandy soils. The results showed that at the heading stage, the FC 100% treatment had the highest plant height and number of tillers between the two cultivars. At the harvest period, the culm and panicle lengths of both cultivars at FC 100% were similar to those of the control. In contrast, the number of panicles, grain number per panicle, and percentage of ripened grains were the highest in the control. Moreover, FL478 and Asemi had the highest grain yields of 1.40 and 2.20 kg·pot-1 in the control, respectively. For both cultivars, the grain yields of the FC 100% and FC 120% treatments were approximately 70% of the control. In comparison, FL478 and Asemi had the highest water productivity of 0.45 and 0.63 kg·m3-1 for the FC 80% treatment, followed by the FC 100% treatment (0.42 and 0.59 kg·m3-1, respectively), which was nearly 14.3% and 20.3% higher than that of the control. Therefore, we found that irrigation at FC 100% is anticipated to be effective in managing surface drip irrigation for rice cultivation in desert climates in arid environments, while maintaining rice yields.

본 연구는 사막기후에서 벼 재배시 지표점적관개 및 관개량에 따른 벼의 생육·수량 특성 및 물생산성을 알아봄으로써 적정 관개량 선정 및 사막기후환경에서 벼 관개시설 재배에 대한 기초자료로 활용하고자 수행한 결과는 다음과 같다. 1. 출수기 생육특성에서는 FL478, 아세미 모두 FC 100% 처리구에서 초장과 분얼수가 가장 길고, 많았고, 수확기 생육특성에서는 두 품종 모두 간장과 이삭장에서 FC 100% 처리구가 대조구에 비해 높거나 같았으나, 이삭수, 이삭당립수 및 등숙율은 대조구에서 가장 높았다. 2. 정조수량은 두 품종 모두 대조구에서 각각 1.40, 2.20 kg/Pot로 가장 높은 수량을 보였으며, 대조구 다음으로 FC 100%와 FC 120% 처리구가 대조구 대비 70% 이상으로 나타났다. 3. 관개량별 물생산성에서는 두 품종 모두 관개량이 가장 적었던 FC 80% 처리구가 각각 0.45, 0.63 kg/m3로 가장 높았고, 다음으로 FC 100% 처리구에서 각각 0.42, 0.59 kg/m3로 높게 나타났으나, 대조구 대비 약 14.3, 20.3% 더 높은 물생산성 평가를 보였다. 4. 상관관계를 분석한 결과 두 품종간에 천립중과 정조수량을 제외한 간장, 수장, 주당 이삭수, 등숙률에서는 상관관계가 인정되지 않았으며, 관개량별에 따른 상관관계에서는 간장 그리고 수량구성요소인 수당립수, 등숙률에서 높은 양의 상관관계가 나타났으며, 정조 수량 또한 상관관계가 나타났다. 따라서, 사막기후환경에서 벼 재배시 지표점적관개는 FC 100% 처리구가 일정 수량을 확보할 수 있고, 효율적인 관개량 관리도 가능할 것으로 사료된다.

Keywords

Acknowledgement

본 논문은 2020년 농촌진흥청 연구사업(과제번호 : PJ01453801)의 지원에 의해 이루어진 것임.

References

  1. Adekoya, M. A., Z. C. Liu, E. Vered, L. G. Zhou, D. Y. Kong, J. Y. Qin, R. F. Ma, X. Q. Yu, G. L. Liu, L. Chen, and L. J. Luo. 2014. Agronomic and Ecological Evaluation on Growing Water-Saving and Drought-Resistant Rice (Oryza sativa L.) Through Drip Irrigation. Journal of Agricultural Science 6(5) : 110-119.
  2. Al Qaydi Saif, S., 2014. Food Security in the United Arab Emirates; the Role of the State in Overseas Farm Crops Production. Asian Journal of Agricultural Extension, Economics & Sociology 3(6) : 569-579. https://doi.org/10.9734/AJAEES/2014/11300
  3. Anandan, A., S. K. Pradhan, and O. N. Singh. 2015. A system of Rice Cultivation for Water Shortfall Irrigated and Lowland Areas:Aerobic Rice an Overview. Popular Kheti 3(3) : 8-13.
  4. Babu, R. C., Nguyen, B. D., Chamarerk, V., Shanmugasundaram, P., Chezhian, P., Jeyaprakash, P., ... Sarkarung, S. 2003. Genetic analysis of drought resistance in rice by molecular markers. Crop Science 43(4) : 1457-1469. https://doi.org/10.2135/cropsci2003.1457
  5. Belder, P., B. A. M. Bouman, R. Cabangon, L. Guoan, E. J. P. Quilang, Y. Li, et al. 2004. Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric. Water Manage 65 : 193-210. https://doi.org/10.1016/j.agwat.2003.09.002
  6. Biswas, P. K. and V. Salokhe. 2002. Effect of N rates, shading, tiller separation, and plant density on the yield of transplanted rice. Tropical Agric. 79 : 168-172.
  7. Borell, A., A. Garside, and S. Fukai. 1997. Improving of water for irrigated rice in a semi-arid tropical environment. Field Crop Res. 52 : 231-248. https://doi.org/10.1016/S0378-4290(97)00033-6
  8. Castaneda, A. R., B.A.M. Bouman, S. Peng, and R.M. Visperas, 2002. The potential of aerobic rice to reduce water use in water-scarce irrigated lowlands in the tropics. In: Proceedings of the International Workshop on Water Wise Rice Production. April, 8-11, IRRI, Los Banos, Philippines.
  9. Chae, J. C. 2006. Rice production science. Hyangmunsa. pp. 19-20.
  10. Choi, J. S., J. G. Won, D. J. Ahn, S. G. Park, and S. P. Lee. 2004. Growth and Yield of rice by Field Water Management for Water-Saving Irrigation. Korean J. Crop Sci. 49(6) : 441-446.
  11. Choi, W. Y., H. K. Park, S. H. Moon, M. K. Choi, S. S. Kim, and C. K. Kim. 2006. Grain Yield and Seed Quality of Rice Plants as Affected by Water-saving Irrigation. Korean Sournal of agricultural and Forest Meteorology 8(3) : 141-144.
  12. Chung, S. O. 1993. An Analysis of the Effects of Turbo-tape Drip Irrigation System on Chinese Cabbage. J. Korean Soc. Agric. Eng. 35(4) : 31-38.
  13. Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, and S. Basra (2009). Plant drought stress: effects, mechanisms and management Sustainable agriculture (pp. 153-188): Springer.
  14. Gang, H., W. Zhaohui, and C. Zhenling. 2020. Managing irrigation water for sustainable rice production in China. Journal of Cleaner Production. 245 : 118928. https://doi.org/10.1016/j.jclepro.2019.118928
  15. Gibson, K. D., A. J. Fischer, and T. C. Foin. 2004. Compensatory responses of late watergrass (Echinochloa phyllopogon) and rice to resource limitations. Weed Sci. 52(2) : 271-280. https://doi.org/10.1614/WS-03-103R
  16. Govindarasu, R., K. Paramasivam, S. Nadaradjan, N. Shashidhara, and M. Vengatesh. 2015. Aerobic Rice: A Production System for Water Scarceness. AEIJST. 2(3) : 1-4.
  17. Hanson, B. R. and D. M. May. 2007. The effect of drip line placement on yield and quality of drip-irrigated processing tomatoes. Irrigation Drainage Systems 21 : 109-118. https://doi.org/10.1007/s10795-007-9023-5
  18. Hur, S. O., S. K. Choi, S. J. Yeop, S. C. Hong, and D. H. Choi. 2019. Assessment of Water Productivity & Potential Water Consumption of Rice by Each Province. Journal Of The Korean Society Of Rural Planning 25(4) : pp. 27-33. https://doi.org/10.7851/Ksrp.2019.25.4.027
  19. Jeong, E. G., K. H. Kang, H. C. Hongg, Y. C. Cho, O. Y. Jung, Y. H. Jeon, J. K. Chang, J. H. Lee, Y. J. Won, U. H. Yang, K. H. Jung, U. S. Yeo, and B. K. Kim. 2019. A wide region of tropical Asia adaptable japonica rice 'Asemi'. J. Korean Soc. Int. Agric. 31(1) : pp. 76-81. https://doi.org/10.12719/KSIA.2019.31.1.76
  20. Kim, C. S., J. H. Kim, S. H. Ko, and K. H. Lee. 1991. Studies on the Cucumber Cultivation by Automatic Irrigation System in the Greenhouse. J. Korean Soc. Agric. Eng. 33(1) : 88-99.
  21. Kim, H. J., S. W. Ahn, K. H. Han, J. Y. Choi, S. O. Chung, M. Y. Roh, and S. O. Hur. 2013. Comparison Study of Water Tension and Content Characteristics in Differently Textured Soils under Automatic Drip Irrigation. Protected Horticulture and Plant Factory 22(4) : 341-348. https://doi.org/10.12791/KSBEC.2013.22.4.341
  22. Kim, K. Y., J. C. Ko, W. C. Shin, H. S. Park, M. K. Baek, J. K. Nam, B. K. Kim, and J. H. Lee. 2014. Effect of low radiation during grain filling stage on rice yield and grain quality. Korean J. Crop Sci. 59(2) : 174-180. https://doi.org/10.7740/kjcs.2014.59.2.174
  23. Kruzhilin, I. P., N. N. Dubenok, M. A. Ganiev, A. S. Ovchinnikov, V. V. Melikhov, N. M. Abdou, K. A. Rodin, and S. D. Fomin3. 2017. Mode of Rice Drip Irrigation. ARPN Journal of Engineering and Applied Sciences 12(24) : 7118-7123.
  24. Lee, Y., S. W. Kim, and K. S. Min. 2004. Growth and Yield of Paddy Rice Cultivation under the Opland Soil. Korea J. Intl. Agri. 16(2) : 136-142.
  25. Maclean, J., B. Hardy, and G. Hettel. 2013. Rice Almanac: Source book for one of the most important economic activities on earth: IRRI.
  26. Makino, A., T. Sato, H. Nakano, and T. Mae. 1997. Leaf photosynthesis and nitrogen allocation in rice under different irradiance. Planta 203 : 390-398. https://doi.org/10.1007/s004250050205
  27. Nam, W. H., J. Y. Choi, S. K. Choi, E. M. Hong, S. H. Jeon, and S. O. Hur. 2012. Discharge Uniformity and Performance Assessment of Drip Irrigation System. Journal of the Korean Society of Agricultural Engineers 54(4) : 29-38. https://doi.org/10.5389/KSAE.2012.54.4.029
  28. Nakano, H. 2000. Effect of early stage shading of directed-seeded rice on growth and yield components. Jpn. J. Crop Sci. 69(2) : 182-188. https://doi.org/10.1626/jcs.69.182
  29. Omaid, N., R. Golam, H. Abid, M. David, W. Shahriar, and D. Bijan. 2018. Low water productivity for rice in Bihar India-A critical analysis. Water 10 : 1082. https://doi.org/10.3390/w10081082
  30. Prasad, S., T. Shamala, and M. Frans JM. 2012. Long Term Salinity Stress Reveals Variety Specific Differences in Root Oxidative Stress Response. Rice Science 19(1) : pp. 36-43. https://doi.org/10.1016/S1672-6308(12)60018-3
  31. Rahmaningsih, M. 2016. Phenotypic and Gene Expression Analysis of Diverse Rice Genotypes in Response to Drought.
  32. Shahin, S. M. and M. A. Salem. 2015. The Challenges of Water Scarcity and the Future of Food Security in the United Arab Emirates (UAE). Natural Resources and Conservation 3(1) : 1-6. https://doi.org/10.13189/nrc.2015.030101
  33. Sohn, Y. M., G. Y. Jeon, J. D. Song, J. H. Lee, and M. E. Park. 2009. Effect of Drip Irrigation on Soil Salinity Control and Growth of Cabbage at the newly reclaimed tidal lands in Korea. Korean J. Soil Sci. Fert. 42(6) : pp. 492-499.
  34. Swamy Mallikarjuna, B. Ahmed, H. U., Henry, A., Mauleon, R., Dixit, S., Vikram, P., ..., Mandal, N. P. 2013. Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega-variety IR64 under drought. PloS one 8(5).
  35. Tabbal, D. F., B. A. Bouman, S. I. Bhuyan, E. B. Sibayan, and M. A. Satter. 2002. On-farm strategies for reducing water input I irrigated Rice. case studies in the Philippines Agric. Water Manage 56 : 93-112. https://doi.org/10.1016/S0378-3774(02)00007-0
  36. Tabbal, D. F., R. M. Lampayan, and S. I. Bhuiyan. 1992. Water efficient irrigation technique for rice. Philippine Journal of Crop Science 18 : 21-30.
  37. Yang, J. C., K. Liu, Z. Q. Wang, Y. Du, and J. H. Zhang. 2007a. Water-Saving and High-Yielding Irrigation for Lowland Rice by Controlling Limiting Values of Soil Water Potential. Journal of Integrative Plant Biology 49(10) : 1445-1454. https://doi.org/10.1111/j.1672-9072.2007.00555.x
  38. Yang, W. H., S. Peng, and M. L. Dionsio-Sese. 2007b. Morphological and photosynthetic responses of rice to low radiation. Korean J. Crop Sci. 52(1) : 1-11.
  39. Yao, Y., Y. Yamamoto, T. Yoshida, Y. Nitta, and A. Miyazaki. 2000. Response of differentiated and degenerated spikelets to top-dressing, shading and day/night temperature treatments in rice cultivars with large panicles. Soil Sci. Plant Nutr. 46(3) : 631-641. https://doi.org/10.1080/00380768.2000.10409128
  40. Yoshida, S., D. Forno, J. Cock, and K. Gomez. 1976. Laboratory manual for p hysiological studies of rice IRRI. Los Banos, Philippines.