DOI QR코드

DOI QR Code

Effect of applied electric potential and micro length scale parameters on the electroelastic analysis of three-layered shear deformable micro-shell

  • Received : 2020.05.16
  • Accepted : 2021.07.08
  • Published : 2021.09.25

Abstract

This paper uses higher-order shear deformation theory and modified couple stress theory (MCST) to the electroelastic results of FG micro-shell integrated with piezoelectric thin sheets subjected to electrical and mechanical loads rested on Pasternak's foundation. Third-order shear deformation theory (TSDT) is used for the description of the displacement field. Effect of micro-size is applied using MCST with the introduction of one micro-length scale parameter. Governing equations are derived based on the principle of virtual work. Micro-shell is composed of a FG micro core and two piezoelectric hollow shells. The numerical results are obtained for the simply-supported boundary conditions. Longitudinal and radial displacements are presented in terms of important parameters such as applied electric potentials, micro length scale parameter, dimensionless geometric parameters and two parameters of Pasternak's foundation.

Keywords

References

  1. Abedini, M. and Zhang, C. (2021), "Dynamic vulnerability assessment and damage prediction of RC columns subjected to severe impulsive loading", Struct. Eng. Mech., Int. J., 77(4), 441-461. https://doi.org/10.12989/sem.2021.77.4.441
  2. Ahmadi, I. and Najafi, M. (2016), "Three-dimensional stresses analysis in rotating thin laminated composite cylindrical shells", Steel Compos. Struct., Int. J., 22(5), 1193-1214. https://doi.org/10.12989/scs.2016.22.5.1193
  3. Alam, Z., Zhang, C. and Samali, B. (2020a), "Influence of seismic incident angle on response uncertainty and structural performance of tall asymmetric structure", Struct. Des. Tall Spec. Build., 29(12), e1750. https://doi.org/10.1002/tal.1750
  4. Alam, Z., Zhang, C. and Samali, B. (2020b), "The role of viscoelastic damping on retrofitting seismic performance of asymmetric reinforced concrete structures", Earthq. Eng. Eng. Vib., 19(1), 223-237. https://doi.org/10.1007/s11803-020-0558-x
  5. Anitescu, C., Atroshchenko, E., Alajlan, N. and Rabczuk, T. (2019), "Artificial neural network methods for the solution of second order boundary value problems", Comput. Mater. Continua, 59(1), 345-359. https://doi.org/10.32604/cmc.2019.06641
  6. Arefi, M. (2013), "Nonlinear thermoelastic analysis of thick-walled functionally graded piezoelectric cylinder", Acta. Mech., 224(11), 2771-2783. https://doi.org/10.1007/s00707-013-0888-0
  7. Arefi, M. and Civalek, O. (2020), "Static analysis of functionally graded composite shells on elastic foundations with nonlocal elasticity theory", Arch. Civil. Mech. Eng., 20(1), 1-17. https://doi.org/10.1007/s43452-020-00032-2
  8. Arefi, M. and Rahimi, G.H. (2011a), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart Struct. Syst., Int. J., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433
  9. Arefi, M. and Rahimi, G.H. (2011b), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays, 5(12), 1442-1454. https://doi.org/10.5897/SRE.9000953
  10. Arefi, M. and Rahimi, G.H. (2012a), "Three-dimensional multi-field equations of a functionally graded piezoelectric thick shell with variable thickness, curvature and arbitrary nonhomogeneity", Acta. Mech., 223(1), 63-79. https://doi.org/10.1007/s00707-011-0536-5
  11. Arefi, M. and Rahimi, G.H. (2012b), "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart Struct. Syst., Int. J., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
  12. Arefi, M. and Rahimi, G.H. (2012c), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13. https://doi.org/10.5755/j01.mech.18.1.1273
  13. Arefi, M. and Zenkour, A.M. (2018), "Size-dependent electro-elastic analysis of a sandwich microbeam based on higher-order sinusoidal shear deformation theory and strain gradient theory", J. Intel. Mater. Syst. Struct., 29(7), 1394-1406. https://doi.org/10.1177/1045389X17733333
  14. Arefi, M. and Zenkour, A.M. (2019), "Influence of magneto-electric environments on size-dependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory", J. Sandw. Struct. Mater., 21(8), 2751-27781. https://doi.org/10.1177/1099636217723186
  15. Arefi, M., Karroubi, R. and Irani-Rahaghi, M. (2016), "Free vibration analysis of functionally graded laminated sandwich cylindrical shells integrated with piezoelectric layer", Appl. Math. Mech., 37(7), 821-834. https://doi.org/10.1007/s10483-016-2098-9
  16. Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel Compos. Struct., Int. J., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525
  17. Arefi, M., Moghaddam, S.K., Bidgoli, E.M.R., Kiani, M. and Civalek, O. (2021), "Analysis of graphene nanoplatelet reinforced cylindrical shell subjected to thermo-mechanical loads", Compos. Struct., 255(1), 112924. https://doi.org/10.1016/j.compstruct.2020.112924
  18. Areias, P. and Rabczuk, T. (2013), "Finite strain fracture of plates and shells with configurational forces and edge rotations", Int. J. Num. Meth. Eng., 94(12), 1099-1122. https://doi.org/10.1002/nme.4477
  19. Areias, P., Rabczuk, T. and Msekhdc, M.A. (2016), "Phase-field analysis of finite-strain plates and shells including element subdivision", Comput. Methods. Appl. Mech. Eng., 312, 322-350. https://doi.org/10.1016/j.cma.2016.01.020
  20. Beni, Y.T., Mehralian, F. and Razavi, H. (2015), "Free vibration analysis of size-dependent shear deformable functionally graded cylindrical shell on the basis of modified couple stress theory", Compos. Struct., 120, 65-78. https://doi.org/10.1016/j.compstruct.2014.09.065
  21. Chakraborty, S., Dey, T. and Kumar, R. (2019), "Stability and vibration analysis of CNT-Reinforced functionally graded laminated composite cylindrical shell panels using semi-analytical approach", Compos. B: Eng., 168, 1-14. https://doi.org/10.1016/j.compositesb.2018.12.051
  22. Chao, M., Kai, C. and Zhiwei, Z. (2020), "Research on tobacco foreign body detection device based on machine vision", Trans. Inst. Measur. Cont., 42(15), 2857-2871. https://doi.org/10.1177/0142331220929816
  23. Dehsaraji, M.L., Arefi, M. and Loghman, A. (2020), "Three dimensional free vibration analysis of functionally graded nano cylindrical shell considering thickness stretching effect", Steel Compos. Struct., Int. J., 34(5), 657-680. http://dx.doi.org/10.12989/scs.2020.34.5.657
  24. Duan, Z., Li, C., Ding, W., Zhang, Y., Yang, M., Gao, T., Cao, H., Xu, X., Wang, D., Mao, C. and Li, H.N. (2021), "Milling force model for aviation aluminum alloy: Academic insight and perspective analysis", China J. Mech. Eng., 34(1), 1-35. https://doi.org/10.1186/s10033-021-00536-9
  25. Ebrahimi, F., Daman, M. and Jafari, A. (2017), "Nonlocal strain gradient-based vibration analysis of embedded curved porous piezoelectric nano-beams in thermal environment", Smart Struct. Syst., Int. J., 20(6), 709-728. https://doi.org/10.12989/sss.2017.20.6.709
  26. Gholami, R., Darvizeh, A., Ansari, R. and Hosseinzadeh, M. (2014), "Size-dependent axial buckling analysis of functionally graded circular cylindrical microshells based on the modified strain gradient elasticity theory", Meccanica, 49(7), 1679-1695. https://doi.org/10.1007/s11012-014-9944-7
  27. Guo, H., Zhuang, X. and Rabczuk, T. (2019), "A deep collocation method for the bending analysis of Kirchhoff plate", Comput. Mater. Continua., 59(2), 433-456. https://doi.org/10.32604/cmc.2019.06660
  28. Haldar, S., Majumder, A. and Kalita, K. (2019), "Bending analysis of composite skew cylindrical shell panel", Struct. Eng. Mech., Int. J., 70(1), 125-131. https://doi.org/10.12989/sem.2019.70.1.125
  29. Huang, B., Li, C., Zhang, Y., Ding, W., Yang, M., Yang, Y., Zhai, H., Xu, X., Wang, D., Debnath, S., Jamil, M., Li, H.N., Ali, H.M., Gupta, M.K. and Said, Z. (2021), "Advances in fabrication of ceramic corundum abrasives based on sol-gel process", China J. Aeron., 34(6), 1-17. https://doi.org/10.1016/j.cja.2020.07.004
  30. Javed, S., Viswanathan, K.K. and Aziz, Z.A. (2016), "Free vibration analysis of composite cylindrical shells with nonuniform thickness walls", Steel Compos. Struct., Int. J., 20(5), 1087-1102. https://doi.org/10.12989/scs.2016.20.5.1087
  31. Ke, L.L., Wang, Y.S. and Reddy, J.N. (2014a), "Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions", Compos. Struct., 16, 626-636. https://doi.org/10.1016/j.compstruct.2014.05.048
  32. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014b), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Smart. Mater. Struct., 23, 125036. https://doi.org/10.1088/0964-1726/23/12/125036
  33. Khoshgoftar, M.J., Rahimi, G.H. and Arefi, M. (2013), "Exact solution of functionally graded thick cylinder with finite length under longitudinally non-uniform pressure", Mech. Res. Commun., 51, 61-66. https://doi.org/10.1016/j.mechrescom.2013.05.001
  34. Lal, A., Saidane, N. and Singh, B.N. (2012), "Stochastic hygrothermoelectromechanical loaded post buckling analysis of piezoelectric laminated cylindrical shell panel", Smart Struct. Syst., Int. J., 9(6), 505-534. https://doi.org/10.12989/sss.2012.9.6.505
  35. Lei, Z. and Tong, L. (2019), "Semi-analytical solutions of free and force vibration behaviors of GRC-FG cylindrical shells", Steel Compos. Struct., Int. J., 32(5), 687-699. https://doi.org/10.12989/scs.2019.32.5.687
  36. Li, H., Pang, F., Du, Y. and Gao, C. (2019), "Free vibration analysis of uniform and stepped functionally graded circular cylindrical shells", Steel Compos. Struct., Int. J., 33(2), 163-180. https://doi.org/10.12989/scs.2019.33.2.163
  37. Li, C., Sun, L., Xu, Z., Wu, X., Liang, T. and Shi, W. (2020), "Experimental investigation and error analysis of high precision FBG displacement sensor for structural health monitoring", Int. J. Struct. Stab. Dyn., 20(06), 2040011. https://doi.org/10.1142/S0219455420400118
  38. Liu, J., Yi, Y. and Wang, X. (2020), "Exploring factors influencing construction waste reduction: A structural equation modeling approach", J. Clean. Prod., 276, 123185. https://doi.org/10.1016/j.jclepro.2020.123185
  39. Liu, M., Li, C., Cao, C., Wang, L., Li, X., Che, J., Yang, H., Zhang, X., Zhao, H., He, G. and Liu, X. (2021), "Walnut fruit processing equipment: academic insights and perspectives", Food Eng. Rev., 1-36. https://doi.org/10.1007/s12393-020-09273-6
  40. Mehralian, F., Beni, Y.T. and Ansari, R. (2016a), "On the size dependent buckling of anisotropic piezoelectric cylindrical shells under combined axial compression and lateral pressure", Int. J. Mech. Sci., 119, 155-169. https://doi.org/10.1016/j.ijmecsci.2016.10.006
  41. Mehralian, F., Beni, Y.T. and Ansari, R. (2016b), "Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell", Compos. Struct., 152, 45-61. https://doi.org/10.1016/j.compstruct.2016.05.024
  42. Nanthakumar, S.S., Lahmer, T., Zhuang, X., Zi, G. and Rabczuk, T. (2016), "Detection of material interfaces using a regularized level set method in piezoelectric structures", Inverse. Prob. Sci. Eng., 24(1), 153-176. https://doi.org/10.1080/17415977.2015.1017485
  43. Nguyen-Thanh, N., Zhou, K., Zhuang, X., Areias, P., Nguyen-Xuan, H., Bazilevs, Y. and Rabczuk, T. (2017), "Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling", Comput. Methods. Appl. Mech. Eng., 316, 1157-1178. https://doi.org/10.1016/j.cma.2016.12.002
  44. Rabczuk, T., Ren, H. and Zhuang, X. (2019), "A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem", Comput. Mater. Continua., 59(1), 31-55. https://doi.org/10.32604/cmc.2019.04567
  45. Razavi, H., Babadi, A.F. and Beni, Y.T. (2017), "Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory", Compos. Struct., 160, 1299-1309. https://doi.org/10.1016/j.compstruct.2016.10.056
  46. Rouhi, H., Ansari, R. and Darvizeh, M. (2016), "Nonlinear free vibration analysis of cylindrical nanoshells based on the Ru model accounting for surface stress effect", Int. J. Mech. Sci., 113, 1-9. https://doi.org/10.1016/j.ijmecsci.2016.04.004
  47. Sahmani, S., Aghdam, M.M. and Akbarzadeh, A.H. (2016), "Size-dependent buckling and postbuckling behavior of piezoelectric cylindrical nanoshells subjected to compression and electrical load", Mater. Des., 105, 341-351. https://doi.org/10.1016/j.matdes.2016.05.065
  48. Salehipour, H., Shahsavar, A. and Civalek, O. (2019), "Free vibration and static deflection analysis of functionally graded and porous micro/nanoshells with clamped and simply supported edges", Compos. Struct., 221, 110842. https://doi.org/10.1016/j.compstruct.2019.04.014
  49. Shokrollahi, H. (2018), "Deformation and stress analysis of a sandwich cylindrical shell using HDQ Method", Steel Compos. Struct., Int. J., 27(1), 35-48. https://doi.org/10.12989/scs.2018.27.1.035
  50. Sun, J., Wang, Z., Zhou, Z., Xu, X. and Lim, C.W. (2018) "Surface effects on the buckling behaviors of piezoelectric cylindrical nanoshells using nonlocal continuum model", Appl. Math. Modell., 59, 341-356. https://doi.org/10.1016/j.apm.2018.01.032
  51. Sun, L., Yang, Z., Jin, Q. and Yan, W. (2020), "Effect of axial compression ratio on seismic behavior of GFRP reinforced concrete columns", Int. J. Struct. Stab. Dyn., 20(06), 2040004. https://doi.org/10.1142/S0219455420400040
  52. Tadi Beni, Y., Mehralian, F. and Zeighampour, H. (2016), "The modified couple stress functionally graded cylindrical thin shell formulation", Mech. Adv. Mater. Struct., 23(7), 791-801. https://doi.org/10.1080/15376494.2015.1029167
  53. Tohidi, H., Hosseini-Hashemi, S.H. and Maghsoudpour, A. (2018), "Size-dependent forced vibration response of embedded micro cylindrical shells reinforced with agglomerated CNTs using strain gradient theory", Smart Struct. Syst., Int. J., 22(5), 527-546. https://doi.org/10.12989/sss.2018.22.5.527
  54. Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computationally expensive models", Adv. Eng. Software., 100, 19-31. https://doi.org/10.1016/j.advengsoft.2016.06.005
  55. Wang, Q. and Varadan, V.K. (2007), "Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes", Smart. Mater. Struct., 16, 178. https://doi.org/10.1088/0964-1726/16/1/022
  56. Wang, Y., Li, C., Zhang, Y., Yang, M., Li, B., Jia, D., Hou, Y. and Mao, C. (2016), "Experimental evaluation of the lubrication properties of the wheel/workpiece interface in minimum quantity lubrication (MQL) grinding using different types of vegetable oils", J. Clean. Prod., 127, 487-499. https://doi.org/10.1016/j.jclepro.2016.03.121
  57. Wang, Y., Xie, K., Fu, T. and Zhang, W. (2020), "A unified modified couple stress model for size-dependent free vibrations of FG cylindrical microshells based on high-order shear deformation theory", Eur. Phys. J. Plus, 135, 71. https://doi.org/10.1140/epjp/s13360-019-00012-3
  58. Yang, M., Li, C., Zhang, Y., Jia, D., Zhang, X., Hou, Y., Li, R. and Wang, J. (2017), "Maximum unreformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions", Int. J. Mach. Tool. Manuf., 122, 55-65. https://doi.org/10.1016/j.ijmachtools.2017.06.003
  59. Yeh, J.-Y. (2016), "Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer", Smart Struct. Syst., Int. J., 18(2), 233-247. https://doi.org/10.12989/sss.2016.18.2.233
  60. Yin, Q., Li, C., Dong, L., Bai, X., Zhang, Y., Yang, M., Jia, D., Li, R. and Liu, Z. (2021), "Effects of physicochemical properties of different base oils on friction coefficient and surface roughness in MQL milling AISI 1045", Int. J. Prec. Eng. Manufact-Green Tech., 1-19. https://doi.org/10.1007/s40684-021-00318-7
  61. Zhang, C. and Wang, H. (2019), "Swing vibration control of suspended structure using active rotary inertia driver system: Parametric analysis and experimental verification", Appl. Sci., 9(15), 3144. https://doi.org/10.3390/app9153144
  62. Zhang, B., He, Y., Liu, D., Shen, L. and Lei, J. (2015), "Free vibration analysis of four-unknown shear deformable functionally graded cylindrical microshells based on the strain gradient elasticity theory", Compos. Struct., 119, 578-597. https://doi.org/10.1016/j.compstruct.2014.09.032
  63. Zhang, Y., Li, C., Ji, H., Yang, X., Yang, M., Jia, D., Zhang, X., Li, R. and Wang, J. (2017), "Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms", Int. J. Mach. Tool. Manufact., 122, 81-97. https://doi.org/10.1016/j.ijmachtools.2017.06.002
  64. Zhang, C., Alam, Z., Sun, L., Su, Z. and Samali, B. (2019), "Fiber Bragg grating sensor-based damage response monitoring of an asymmetric reinforced concrete shear wall structure subjected to progressive seismic loads", Struct. Cont. Heal. Monitor., 26(3), e2307. https://doi.org/10.1002/stc.2307
  65. Zhang, J., Wang, M., Tang, Y., Ding, Q., Wang, C., Huang, X., Chen, D. and Yan, F. (2021), "Angular velocity measurement with improved scale factor based on a wideband-tunable optoelectronic oscillator", IEEE Trans. Instrument. Measur., 70, 1-9. https://doi.org/10.1109/TIM.2021.3067183
  66. Zhao, X., Zhu, W.D. and Li, Y.H. (2020), "Analytical solutions of nonlocal coupled thermoelastic forced vibrations of micro-/nano-beams by means of Green's functions", J. Sound Vib., 481, 115407. https://doi.org/10.1016/j.jsv.2020.115407
  67. Zuo, C., Chen, Q., Tian, L., Waller, L. and Asundi, A. (2015), "Transport of intensity phase retrieval and computational imaging for partially coherent fields: The phase space perspective", Opt. Las. Eng., 71, 20-32. https://doi.org/10.1016/j.optlaseng.2015.03.006
  68. Zuo, C., Sun, J., Li, J., Zhang, J., Asundi, A. and Chen, Q. (2017), "High-resolution transport-of-intensity quantitative phase microscopy with annular illumination", Sci. Rep., 7(1), 1-22. https://doi.org/10.1038/s41598-017-06837-1