DOI QR코드

DOI QR Code

A Method of Plotting Component A Scaled Waveform for Aircraft Lightning Test

항공기 낙뢰 시험을 위한 Component A 축소 파형 도식화 방법

  • Jo, Jae-Hyeon (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Kim, Yun-Gon (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Kim, Dong-Hyeon (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Lee, Hak-Jin (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Myong, Rho-Shin (School of Mechanical and Aerospace Engineering, Gyeongsang National University)
  • Received : 2021.04.13
  • Accepted : 2021.06.17
  • Published : 2021.09.01

Abstract

Lightning can deliver large amounts of energy to the aircraft in a short period of time, resulting in catastrophic consequence. In particular, lightning strikes accompanied by high temperature heat and current can damage aircraft surface and internal electronic equipment, seriously affecting flight safety. Lightning experiments to analyze this effect use a Component A waveform with a maximum current of 200 kA as specified in SAE ARP 5412B. However, the actual lightning occurs mostly below 35kA and lightning indirect tests are conducted by reducing waveforms to prevent damage to internal electronic equipment. In this study, we examine previous methods to plot the Component A reduced waveform and identify their limitations. We then propose a new method to plot the reduced waveform based on adjusting the correction factor of the aircraft lightning Component A waveform. Finally, the electromagnetic analysis software EMA3D was used to compare the internal induced current size reduction ratio of the internal cable harness of the EC-155B helicopter.

낙뢰는 짧은 시간 동안 다량의 에너지를 항공기에 전달하여 치명적인 결과를 초래할 수 있다. 특히 낙뢰는 고온의 열과 전류를 동반하여 항공기 표면 손상과 내부 전자장비에 영향을 미쳐 비행의 안전에 심각한 영향을 미칠 수 있다. 이를 분석하기 위한 낙뢰 시험에는 미항공우주원고서 SAE ARP 5412B에 규정된 최대전류 200kA인 Component A 파형이 사용된다. 하지만 실제 낙뢰 크기는 대부분 35kA 내외로 발생하며 전기체 대상으로 하는 낙뢰 간접 시험에서 내부 전자장비 손상 예방을 위해 파형을 축소하여 시험을 진행한다. 본 연구에서는 기존 Component A 축소 파형을 도식화하는 방법을 알아보고 그 한계를 분석하였다. 나아가 항공기 낙뢰 Component A 파형의 보정계수를 조절하는 방식의 신규 축소 파형 도식 방법을 제안한다. 마지막으로 전자기 해석 소프트웨어 EMA3D를 활용하여 EC-155B 헬리콥터 내부 케이블 하네스의 파형 감소비에 따른 내부 유도 전류 크기 감소비를 비교하였다.

Keywords

Acknowledgement

이 논문은 국토교통부와 국토교통과학기술진흥원 및 항공안전기술원의 민수헬기인증개발사업의 지원을 받아 수행되었습니다. (21CHTR-C139569-05)

References

  1. Park, S. W., Kim, Y. G., Kang, Y. S. and Myong, R. S., "Analysis of Effects of Lightning on PAV Using Computational Simulation and a Proposal to Establish Certification Guidance," Journal of Aerospace System Engineering, Vol. 13, No. 6, 2019, pp. 60~69. https://doi.org/10.20910/JASE.2019.13.6.60
  2. Korea Meteorological Administration, 2019 Lightning Yearbook, Seoul, 2019.
  3. Flight Safety Foundation, "SUKHOI Superjet 100-95," FSF Accidents and Incidents, 2019.
  4. Kim, J. J., Baek, S. T., Song, D. G. and Myong, R. S., "Computational Simulation of Lightning Strike on Aircraft and Design of Lightning Protection System," Journal of Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 12, 2016, pp. 1071~1086. https://doi.org/10.5139/JKSAS.2016.44.12.1071
  5. Parmantier, J. P., Issac, F. and Gobin, V., "Indirect Effects of Lightning on Aircraft and Rotorcraft," Aerospace Lab, Issue 5, AL05-10, 2012.
  6. Aircraft Lightning Environment and Related Test Waveforms, SAE ARP 5412 Revision B, SAE Aerospace, 2013.
  7. Advanced General Aviation Transport Experiments, Lightning Direct Effects Handbook Revision A, 2017.
  8. Jeong, D. Y., "Full Vehicle Test of Rotorcraft against the Lightning Indirect Effects," Proceeding of the Society for Aerospace System Engineering Fall Conference 2018, 2018, pp. 1~3.
  9. Jeong, D. Y., "A Study on Means of Compliance for Lightning Protection in the System and Structure of Air Vehicles," Journal of Aerospace System Engineering, Vol. 14, 2020, pp. 49~55.
  10. Lee, J. P. and Tae, J. S., "Indirect Lightning Tests for T-50 Aircraft," Proceeding of The Korean Society for Aeronautical and Space Sciences Fall Conference, 2006, pp. 883~888.
  11. Plooster, M. N., "Numerical Model of the Return Stroke of the Lightning Discharge," The Physics of Fluids, Vol. 14, No. 10, 1971, pp. 2124~2133. https://doi.org/10.1063/1.1693303
  12. Ogasawara, T., Hirano, Y. and Yoshimura, A., "Coupled Thermal-Electrical Analysis for Carbon Fiber/Epoxy Composites Exposed to Simulated Lightning Current," Composite Part A: Applied Science and Manufacturing, Vol. 41, 2010, pp. 973~981. https://doi.org/10.1016/j.compositesa.2010.04.001
  13. Huang, L., Gao, C., Guo, F. and Sun, C., "Lightning Indirect Effects on Helicopter: Numerical Simulation and Experiment Validation," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 4, 2017, pp. 1171~1179. https://doi.org/10.1109/TEMC.2017.2651900
  14. Wang, S. M., Chen, X. N., Guo, F. and Huang, L. Y., "Lightning Indirect Effects on UH-1H Helicopter: Numerical Simulation Analysis and EM Shielding," 2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Bejing), 2017, pp. 1~4.
  15. Federal Aviation Administration, "Aircraft Electrical and Electronic System Lightning Protection," AC 20 136 Revision B, 2011.
  16. SAE International, "Aircraft Lightning Direct Effects Certification," SAE ARP 5577, 2008
  17. SAE International, "Aircraft Lightning Zone," SAE ARP 5414 Revision B, 2018.
  18. Laroche, P., Blanchet, P., Delannoy, A. and Issac, F., "Experimental Studies of Lightning Strikes to Aircraft," Aerospace Lab, Issue 5, AL05-06, 2012.
  19. SAE International, "User's Manual for Certification of Aircraft Electrical/Electronic Systems for the Indirect Effects of Lightning," SAE ARP 5415 Revision B, 2020.
  20. Radio Technical Commission for Aeronautics, "Environmental Conditions and Test Procedures for Airborne Equipment Section 22-Lightning Induced Transient Susceptibility," DO 160 Revision G, 2010, pp. 327~331.
  21. Kang, Y. S., Park, S. W., Roh, J. S. and Myong, R. S., "Computational Investigation of Expanded Metal Foils on the Lightning Protection Performance of a Composite Rotor Blade," International Journal of Aeronautical and Space Sciences, Vol. 22, No. 1, 2021, pp. 203~221. https://doi.org/10.1007/s42405-020-00288-1