DOI QR코드

DOI QR Code

Prediction and Validation of Design Loads of Satellite Components Using Modal Mass Acceleration Curve

모달 질량 가속도 곡선을 이용한 인공위성 탑재품의 설계하중 예측 및 검증

  • Received : 2021.05.12
  • Accepted : 2021.07.15
  • Published : 2021.09.01

Abstract

This paper discusses the prediction and validation of design loads of satellite components using modal mass acceleration curve (Modal MAC). To calculate the acceleration upper bound of the satellite components subjected to the launch environment by the Modal MAC, the parameters of SpaceX Falcon 9 launch vehicle were used, and the acceleration upper bound curve in the modal domain was derived. After that, the maximum acceleration loads applied to the satellite components were predicted by combining Modal MAC with the spacecraft interface loads of the satellite/launch vehicle and modal information of the satellite. In addition, the accuracy of the Modal MAC was validated through comparison with the results of the coupled loads analysis using a simple satellite and launch vehicle model.

본 연구에서는 모달 질량 가속도 곡선을 이용한 인공위성 탑재품의 설계하중 예측 및 검증에 관해 다룬다. 모달 질량 가속도 곡선을 구성하기 위해 SpaceX의 Falcon 9 발사체 정보를 사용하였으며, 이를 통해 모달 영역에서의 상계가속도 곡선을 도출하고 이를 위성체/발사체 경계하중 및 위성체 모달 정보와 결합하여 위성체 탑재품이 발사환경에서 노출될 최대가속도 하중을 예측하였다. 또한 단순한 인공위성 및 발사체 모델을 이용한 연성하중해석 결과와 비교 검토하여 모달 질량 가속도 곡선이 적절한 상계해를 도출하는 것을 확인하였다.

Keywords

Acknowledgement

본 논문은 국방과학연구소의 2019 미래도전기술개발사업 PM 기획사업(초소형 SAR 위성군 설계 및 제작을 통한 운용능력 확보)을 통해 도출된 연구 결과입니다.

References

  1. Lim, J. H., Hwang, D.-S., Kim, K.-W., Lee, G. H. and Kim, J.-G., "A coupled dynamic loads analysis of satellites with an enhanced Craig-Bampton approach," Aerospace Science and Technology, Vol. 69, 2017, pp. 114~122. https://doi.org/10.1016/j.ast.2017.06.023
  2. Lim, J. H., Kim, K.-W., Kim, S.-H. and Hwang, D.-S., "Finite Element Model Updating and Validation of Satellites for Coupled Load Analysis," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 41, No. 8, 2013, pp. 605~612. https://doi.org/10.5139/JKSAS.2013.41.8.605
  3. Hwang, D.-S., Lee, Y.-S. and Kim, I.-G., "A Study on the Optimization of a Spacecraft Structure by Using Coupled Load Analysis Model and Modal Transient Analysis," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 32, No. 6, 2004, pp. 34~48. https://doi.org/10.5139/JKSAS.2004.32.6.034
  4. Hwang, D.-S., Lee, Y.-S. and Kim, I.-G., "Optimization of Spacecraft Structure by Using Coupled Load Analysis," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 30, No. 4, 2002, pp. 106~113. https://doi.org/10.5139/JKSAS.2002.30.4.106
  5. Kim, K.-W., Kim, S.-W., Lim, J.-H., Kim, C.-H. and Hwang, D.-S., "A Study on the Verifying Structural Safety of Satellite Structure by Coupled Load Analysis," Journal of Satellite, Information and Communications, Vol. 5, No. 1, 2010, pp. 63~68.
  6. Lim, J. H., Hwang, D.-S., Sohn, D. and Kim, J.-G., "Improving the reliability of the frequency response function through semi-direct finite element model updating," Aerospace Science and Technology, Vol. 54, 2016, pp. 59~71. https://doi.org/10.1016/j.ast.2016.04.003
  7. Trubert, M., "Mass Acceleration Curve for Spacecraft Structural Design," JPL D-5882, NASA Jet Propulsion Laboratory, 1989.
  8. Kern, D., "Science Instrument Design Loads," Joint JPL-UCB Random Vibration Workshop, NASA Jet Propulsion Laboratory, 2008.
  9. Chen, B. C., "Modal MAC Analysis vs. Sine Vibe, A Case Study," NASA Jet Propulsion Laboratory, 2016.
  10. Mourhatch, R., Chen, B.-C., Tsuha, W., Mohasseb, P. and Peng, C.-Y., "A Case Study of Modal Mass Acceleration Curve Loads vs. Sine Loads," NASA Jet Propulsion Laboratory, 2017 SLAMS Early Career Forum, 2017.
  11. Tsuha, W. S. and Peng, C.-Y. P., "Modal MAC Launch Loads for SMAP Structural Design," NASA Jet Propulsion Laboratory, 2012.
  12. Craig, R. R. and Bampton, B. C. C., "Coupling of Substructures for Dynamic Analyses," AIAA Journal, Vol. 6, 1968, pp. 1313~1319. https://doi.org/10.2514/3.4741
  13. Kim, J.-G., Seo, J. and Lim, J. H., "Novel modal methods for transient analysis with a reduced order model based on enhanced Craig-Bampton formulation," Applied Mathematics and Computation, Vol. 344~355, 2019, pp. 30~45. https://doi.org/10.1016/j.amc.2018.09.070
  14. Go, M.-S., Lim, J. H., Kim, J.-G. and Hwang, K.-R., "A family of Craig-Bampton methods considering residual mode compensation," Applied Mathematics and Computation, Vol. 369, 124822, 2020. https://doi.org/10.1016/j.amc.2019.124822
  15. Hurty, W. C., "A Criterion for Selecting Realistic Natural Modes of a Structure," TM33-364, NASA Jet Propulsion Laboratory, Pasadena, CA, 1967.
  16. Wijker, J. J., Spacecraft Structures, Springer Science & Business Media, 2008.
  17. Falcon User's Guide, SpaceX, 2020.
  18. MSC/NASTRAN Basic Dynamic Analysis User's Guide, MacNeal-Schwendler Corporation, Vol. 68, 1993.
  19. Cho, H.-K., Seo, J.-K. and Myung, N.-H., "Spectrum and Equivalent Transient Vibration Analysis of Small Composite Satellite Structure," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 37, No. 6, 2009, pp. 586~594. https://doi.org/10.5139/JKSAS.2009.37.6.586
  20. Song, S., Lee, S.-Y., Kim, H.-R. and Chang, Y.-K., "KAUSAT-5 Development and Verification based on 3U Cubesat Standard Platform," Journal of the Korean Society for Aeronautical & Space Sciences, Vol. 45, No. 8, 2017, pp. 686~696. https://doi.org/10.5139/JKSAS.2017.45.8.686
  21. Lim, J. H., "A correlation study of satellite finite element model for coupled load analysis using transmissibility with modified correlation measures," Aerospace Science and Technology, Vol. 33, No. 1, 2014, pp. 82~91. https://doi.org/10.1016/j.ast.2014.01.002