Recent Research Trend in Ferroelectrics for Effective Photovoltaics

태양전지 효율향상을 위한 강유전체의 연구동향

  • 박정웅 (가천대학교 전기공학과)
  • Published : 2021.02.28

Abstract

강유전체는 특유의 높은 유전상수와 자발분극으로 인해 반도체 소자 및 센서 등에서 널리 활용되어 왔다. 강유전체의 특성을 활용하여 광전소자에서 형성된 전하를 원하는 방향으로 쉽게 이동시킬 수 있는 특성을 가지고 있어 광전소재와 결합 시 특성 향상이 가능한 것으로 알려져 있다. 그러나 강유전체와 기존 태양전지와의 융합 연구들은 기초적인 단계의 연구가 산발적으로 진행되고 있으나, 아직 실용화 단계에는 이르지 못하고 있다. 본 서지에서는 최근에 활발히 연구되기 시작한 강유전 기반 광소자와 그 관련 연구를 소개하고자 한다. 특히 강유전체 자체를 활용한 태양전지와 유기태양전지, 실리콘 태양전지, 페로브스카이트 태양전지 등 최근 가장 활발히 연구되고 있는 태양전지 소재와 강유전체를 결합한 새로운 태양전지의 연구동향을 다룰 고자 한다. 이와 같은 자발분극에 의한 캐리어 이동의 변화는 에너지 소자 전반에 기여할 수 있을 것이다.

Keywords

References

  1. R. Ramesh and N. A. Spaldin, Multiferroics: Progress and prospects in thin films, Nat. Mater., 6, 21-29 (2007). https://doi.org/10.1038/nmat1805
  2. P. Zubko, S. Gariglio, M. Gabay, P. Ghosez, and J.-M. Triscone, Interface physics in complex oxide heterostructures, Annu. Rev. Condens. Matter. Phys., 2, 141-165 (2011). https://doi.org/10.1146/annurev-conmatphys-062910-140445
  3. H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, Emergent phenomena at oxide interfaces, Nat. Mater., 11, 103-113 (2012). https://doi.org/10.1038/nmat3223
  4. N. A. Hill, Why are there so few magnetic ferroelectrics?, J. Phys. Chem. B, 104, 6694-6709 (2000). https://doi.org/10.1021/jp000114x
  5. L. Li., C. Richter, J. Mannhart, and R. C. Ashoori, Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces, Nat. Phys., 7, 762-766 (2011). https://doi.org/10.1038/nphys2080
  6. R. E. Cohen, Origin of ferroelectricity in perovskite oxides, Nature, 358, 136-138 (1992). https://doi.org/10.1038/358136a0
  7. L. R. Testardi, Structural instability and superconductivity in A-15 compounds, Rev. Mod. Phys., 47, 637 (1975). https://doi.org/10.1103/RevModPhys.47.637
  8. I. K. Jeong, S. Lee, S.-Y. Jeong, C. J. Won., N. Hur, and A. Llobet, Structural evolution across the insulator-metal transition in oxygen-deficient BaTiO3-δ studied using neutron total scattering and Rietveld analysis, Phys. Rev. B, 84, 064125 (2011).
  9. H. J. Lee, M. Lee, K. Lee, J. Jo, H. Yang, Y. Kim, S. C. Chae, U. Waghmare, and J. H. Lee, Scale-free ferroelectricity induced by flat phonon bands in HfO2, Science, 369, 6509, 1343-1347 (2020). https://doi.org/10.1126/science.aba0067
  10. M. D. Glinchuk, A. N. Morozovska, A. Lukowiak, W. Strek, M. K. Silibin, D. V. Karpinsky, Y. Kim, and S. V. Kalinin, Possible electrochemical origin of ferroelectricity in HfO2 thin films, J. Alloys Compd., 830, 153628 (2020). https://doi.org/10.1016/j.jallcom.2019.153628
  11. Y. Zhou, Y. K. Zhang, Q. Yang, J. Jiang, P. Fan, M. Liao, and Y. C. Zhou, The effects of oxygen vacancies on ferroelectric phase transition of HfO2-based thin film from first-principle, Comput. Mater. Sci., 167, 143-150 (2019). https://doi.org/10.1016/j.commatsci.2019.05.041
  12. R. K. Katiyar, P. Misra, G. Moreell, and R. S. Katiyar, Effect of poling on photovoltaic properties in highly oriented BiFeO3 thin films, Integr. ferroelectr., 157(1), 168-173 (2014). https://doi.org/10.1080/10584587.2014.912892
  13. S. Y. Yang, J. Seidel, S. J. Byrnes, P. Shafer, C.-H. Yang, M. D. Rossell, P. Yu, Y.-H. Chu, J. F. Scott, J. W. Ager III, L. W. Martin, and R. Ramesh, Above-bandgap voltages from ferroelectric photovoltaic devices, Nat. Nanotechnol., 5, 143-147 (2010). https://doi.org/10.1038/nnano.2009.451
  14. J. Seidel, D. Fu, S. Y. Yang, E. Alarcon-Llado, J. Wu, R. Ramesh, and J. W. Ager III, Efficient photovoltaic current generation at ferroelectric domain walls, Phys. Rev. Lett., 107, 126805 (2011). https://doi.org/10.1103/physrevlett.107.126805
  15. G. Chen, J. Chen. W. Pei, Y. Lu, Q. Zhang, Q. Zhang, and Y. He, Bismuth ferrite materials for solar cells: Current status and prospects, Mater. Res. Bull., 110, 39-49 (2019) https://doi.org/10.1016/j.materresbull.2018.10.011
  16. W. S. Choi, M. F. Chishlom, D. J. Singh, T. Choi, G. E. Jellison, and H. N. Lee, Wide bandgap tunability in complex transition metal oxides by site-specific substitution, Nat. Commun., 3, 689 (2012). https://doi.org/10.1038/ncomms1690
  17. H. An, J.Y. Han, B. Kim, J. Song, S. Y. Jeong, C. Franchini, C. W. Bark, and S. Lee, Large enhancement of the photovoltaic effect in ferroelectric complex oxides through bandgap reduction, Sci. Rep., 6, 28313 (2016). https://doi.org/10.1038/srep28313
  18. H. Matsuo, Y. Noguchi, and M. Miyayama, Gap-state engineering of visible-light-active ferroelectrics for photovoltaic applications, Nat. Commun., 8, 207 (2017) https://doi.org/10.1038/s41467-017-00245-9
  19. L. Wu, A. Podpirka, J. E. Spanier, and P. K. Davies, Ferroelectric, optical, and photovoltaic properties of morphotropic phase boundary compositions in the PbTiO3-BiFeO3-Bi(Ni1/2Ti1/2)O3 System, Chem. of Mater., 31, 11, 4184-4194 (2019). https://doi.org/10.1021/acs.chemmater.9b00996
  20. S. J. Gong, F. Zheng, and A. M. Rappe, phonon influence on bulk photovoltaic effect in the ferroelectric semiconductor GeTe, Phys. Rev. Lett., 121, 017402 (2018).
  21. P.-F. Li, Y.-Y. Tang, W.-Q. Liao, H.-Y. Ye, Y. Zhang, D.-W. Fu, Y.-M. You, and R.-G. Xiong, A semiconducting molecular ferroelectric with a bandgap much lower than that of BiFeO3, NPG Asia Mater., 9, e342 (2017). https://doi.org/10.1038/am.2016.193
  22. H. Wang, G. Gou, and J. Li, Ruddlesden-popper perovskite sulfides A3B2S7: A new family of ferroelectric photovoltaic materials for the visible spectrum, Nano Energy, 22, 507-513 (2016). https://doi.org/10.1016/j.nanoen.2016.02.036
  23. G. Zhang, H. Wu, G. Li, Q. Huang, C. Yang, F. Huang, F. Liao, and J. Lin, New high Tc multiferroics KBiFe2O5 with narrow band gap and promising photovoltaic effect, Sci. Rep., 3, 1265 (2013). https://doi.org/10.1038/srep01265
  24. C. Nie, S. Zhao, Y. Bai, and Q. Lu, The ferroelectric photovoltaic effect of BiCrO3/BiFeO3 bilayer composite films, Ceram. Int., 42(12), 14036-14040, (2016). https://doi.org/10.1016/j.ceramint.2016.06.010
  25. J. Chakrabartty, R. Nechache, S. Li, M. Nicklaus, A. Ruediger, and F. Rosei, Photovoltaic properties of multiferroic BiFeO3/BiCrO3 heterostructures, J. Am. Ceram. Soc., 97(6), 1837-1840 (2014). https://doi.org/10.1111/jace.12837
  26. S. Sharma, M. Tomar, A. Kumar, N. K. Puri, and V. Gupta, Photovoltaic effect in BiFeO3/BaTiO3 multilayer structure fabricated by chemical solution deposition technique, J. Phys. Chem. Solids., 93, 63-67 (2016). https://doi.org/10.1016/j.jpcs.2016.02.010
  27. L. Wang, H. Ma, L. Chang, C. Ma, G. Yuan, J. Wang, and T. Wu, Ferroelectric BiFeO3 as an oxide dye in highly tunable mesoporous all-oxide photovoltaic heterojunctions, Small, 13(1), 1602355 (2017). https://doi.org/10.1002/smll.201602355
  28. W. Huang, C. Harnagea, D. Benetti, M. Chaker, F. Rosei, and R. Nechache, Multiferroic Bi2FeCrO6 based p-i-n heterojunction photovoltaic devices, J. Mater. Chem. A., 5, 10355-10364 (2017). https://doi.org/10.1039/C7TA01604B
  29. R. Nechache, C. Harnagea, S. Li, L. Cardenas, W. Huang, J. Chakrabartty, and F. Rosei, Bandgap tuning of multiferroic oxide solar cells, Nat. Photonics., 9, 61-67 (2014).
  30. Y. B. Yuan, T. J. Reece, P. Sharma, S. Poddar, S. Ducharme, A. Gruverman, Y. Yang, and J. S. Huang, Efficiency enhancement in organic solar cells with ferroelectric polymers, Nat. Mater., 10, 296-302 (2011) https://doi.org/10.1038/nmat2951
  31. Y. B. Yuan, P. Sharma, Z. G. Xiao, S. Poddar, A. Gruverman, S. Ducharme, and J. S. Huang, Understanding the effect of ferroelectric polarization on power conversion efficiency of organic photovoltaic devices, Energ. Environ. Sci., 5, 8558-8563 (2012). https://doi.org/10.1039/c2ee22098a
  32. S. J. Kang, Y. J. Park, I. Bae, K. J. Kim, H. C. Kim, S. Bauer, E. L. Thomas, and C. Park, Printable ferroelectric PVDF/PMMA blend films with ultralow roughness for low voltage non-volatile polymer memory, Adv. Funct. Mater., 19, 2812-2818 (2009). https://doi.org/10.1002/adfm.200900589
  33. S. B. Kang, S. H. Won, M. J. Im, C. U. Kim, W. I. Park, J. M. Baik, and K. J. Choi, Enhanced piezoresponse of highly aligned electrospun poly(vinylidene fluoride) nanofibers, Nanotechnology, 28(39), 395402 (2017). https://doi.org/10.1088/0957-4484/28/39/395402
  34. K. S. Nalwa, J. A. Carr, R. C. Mahadevapuram, H. K. Kodali, S. Bose, Y. Chen, J. W. Petrich, B. Ganapathysubramanian, and S. Chaudhary, Enhanced charge separation in organic photovoltaic films doped with ferroelectric dipoles, Energ. Environ. Sci., 5, 7042-7049 (2012). https://doi.org/10.1039/c2ee03478f
  35. S. B. Kang, M. H. Jeong, I. Y. Choi, S. D. Sohn, S. H. Kim, H. J. Shin, W. I. Park, J. C. Shin, M. H. Song, and K. J. Choi, Self-assembled, highly crystalline porous ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) interlayer for Si/organic hybrid solar cells, Nano Energy, 41(8), 243-250 (2017). https://doi.org/10.1016/j.nanoen.2017.09.033
  36. N. G. Park, Perovskite solar cells: An emerging photovoltaic technology, Materials Today, 18(2), 65-72 (2015). https://doi.org/10.1016/j.mattod.2014.07.007
  37. C. Sun, Y. Guo, B. Fang, J. Yang, B. Qin, H. Duan, Y. Chen, H. Li, and H. Liu, Enhanced photovoltaic performance of perovskite solar cells using polymer P(VDF-TrFE) as a processed additive, J. Phys. Chem. C, 120(24), 12980-12988 (2016). https://doi.org/10.1021/acs.jpcc.6b05255
  38. Y. C. Zhao, J. Wei, H. Li, Y. Yan, W. K Zhou, D. P. Yu, and Q. Zhao, A polymer scaffold for self-healing perovskite solar cells, Nat. Commun., 7, 10228 (2016). https://doi.org/10.1038/ncomms10228