Stimuli-responsive Smart Surface with Reversibly Switchable Wettability

자극 응답성 초발수-초친수 표면 특성 제어 기술

  • Lim, Ka Hyun (Department of Chemical and Biological Engineering, Sookmyung Women's University) ;
  • Rho, Yoo Jin (Department of Chemical and Biological Engineering, Sookmyung Women's University) ;
  • Lim, Ho Sun (Department of Chemical and Biological Engineering, Sookmyung Women's University)
  • 임가현 (숙명여자대학교 화공생명공학부) ;
  • 노유진 (숙명여자대학교 화공생명공학부) ;
  • 임호선 (숙명여자대학교 화공생명공학부)
  • Published : 2021.12.31

Abstract

가역적인 표면 젖음성의 제어가 가능한 스마트 표면은 첨단 센서, 기능성 멤브레인 등 여러 산업분야에 적용될 수 있는 계면제어 기술로써 많은 관심을 받을 것으로 기대된다. 표면의 젖음성은 표면의 화학적 구조와 기하학적 입체 구조에 의해 영향을 받는 데, 특히 외부자극에 의해 소재 물성을 가변시킬 수 있는 스마트 고분자 소재를 나노구조가 제어된 표면에 도입함으로써 표면의 젖음성을 초발수에서 초친수로 가역적으로 전환시킬 수 있는 스마트 표면을 효과적으로 구현할 수 있다. 자극 응답성 스마트 소재는 인가하는 외부자극에 따라 물리적 자극(빛, 온도, 전기, 자기)과 화학적 자극(pH, 용매, 이온)으로 구분할 수 있으며, 이를 복합적으로 적용한 이중/다중 유발 자극에 반응하는 소재가 있다. 본 기고문에서는 외부자극에 응답하는 자극응답성 고분자를 나노 구조 표면에 도입하여 초발수에서 초친수로의 가역적인 젖음성 변화가 가능한 고기능성 스마트 표면의 최근 연구 동향과 미래 전망에 대해 소개하고자 한다. 이런 다양한 외부자극을 이용한 표면 특성의 가역적 제어 기술을 통해 물-오일의 분리, 바이오센서, 약물 전달, 소프트로보틱스와 같은 스마트 소재의 잠재적 발전 가능성 또한 엿볼 수 있을 것으로 기대된다.

Keywords

References

  1. M. Calliea and D. Quere, On water repellency, Soft Matter, 1, 55-61 (2005). https://doi.org/10.1039/b501657f
  2. H. Zhu and Z. Guo, Understanding the separations of oil/water mixtures from immiscible to emulsions on super-wettable surfaces, Journal of Bionic Engineering, 13, 1-29 (2016) https://doi.org/10.1016/s1672-6529(14)60156-6
  3. G. D. Crevoisier, P. Fabre, J. M. Corpart and L. Leibler, Switchable tackiness and wettability of a liquid crystalline polymer, Science, 285, 1246-1249 (1999). https://doi.org/10.1126/science.285.5431.1246
  4. T. Young, An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London, 95, 65-87 (1805). https://doi.org/10.1098/rstl.1805.0005
  5. R. N. Wenzel, Resistance of solid surfaces to wetting by water, Transactions of the Faraday Society, 28, 988-994 (1936).
  6. A B D Cassie and S. Baxter, Wettability of porous surface, Transactions of the Faraday Society, 40, 546-551 (1944). https://doi.org/10.1039/TF9444000546
  7. A. Lafuma and D. Quere, Superhydrophobic states, Nature Materials, 2, 457-460 (2003). https://doi.org/10.1038/nmat924
  8. W. Barthlott and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta, 202, 1-8(1997). https://doi.org/10.1007/s004250050096
  9. B. Wilhelm and N. Ehler, Raster-Elektronenmikroskopie der Epidermis-Oberflachen von Spermatophyten, Tropische und Subtropische Pflanzenwelt, Mainz: Akademie der Wiss. u. d. Literatur; Wiesbaden: Steiner [in Komm.], German, 19, 1-105 (1977).
  10. T. Onda, S. Shibuichi, N. Satoh, and K. Tsujii, Superwater-repellent fractal surfaces, Langmuir, 12, 2125-2127 (1996). https://doi.org/10.1021/la950418o
  11. A. Ahuja et al., Nanonails: a simple geometrical approach to electrically tunable superlyophobic-surfaces. Langmuir, 24, 9-14 (2008). https://doi.org/10.1021/la702327z
  12. A. Tuteja et al., Designing superoleophobic surfaces, Science, 318, 1618-1622 (2007). https://doi.org/10.1126/science.1148326
  13. T. Wong et al. Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity, Nature, 477, 443-447 (2011). https://doi.org/10.1038/nature10447
  14. A. Lafuma and D. Quere, Slippery pre-suffused surface, Europhys. Lett., 96, 56001 (2011). https://doi.org/10.1209/0295-5075/96/56001
  15. X. Feng and L. Jiang, Design and creation of superwetting/antiwetting surfaces, Adv. Mater., 18, 3063-3078 (2006). https://doi.org/10.1002/adma.200501961
  16. G. Moller, M. Harke, H. Motschmann, H. and D. Prescher, Controlling micro droplet formation by light, Langmuir, 14(18), 4955-4957 (1998). https://doi.org/10.1021/la980400o
  17. X. Qu, N. Liu, F. Zhang, Y. Li, L. Feng, and L. Jiang, Aminoazobenzene @ Ag modified meshes with large extent photo-response: Towards reversible oil/water removal from oil/water mixtures, Chemical Science, 10, 4089-4096 (2019). https://doi.org/10.1039/c9sc00020h
  18. H. Kang, Y. Liu, H. Lai, X. Yu, Z. Cheng, and K. Jiang. Under-oil switchable superhydrophobicity to superhydrophilicity transition on TiO2 nanotube arrays, ACS Nano, 12, 1074-1082 (2018). https://doi.org/10.1021/acsnano.7b05813
  19. Y. Pan, W. Kong, B. Bhushan, X. Zhao, Rapid, ultraviolet-induced, reversibly switchable wettability of superhydrophobic/superhydrophilic surface, Beilstein Journal of Nanotechnology, 10, 866-873 (2019). https://doi.org/10.3762/bjnano.10.87
  20. P. Raturi, K. Yadav, J. Singh. ZnO-nanowires-coated smart surface mesh with reversible wettability for efficient on-demand oil/water separation, ACS Applied Materials & Interfaces, 9, 6007-6013 (2017). https://doi.org/10.1021/acsami.6b14448
  21. J. Yong, F. Chen, Q. Yang, U. Farooq, and X. Hou. Photoinduced switchable underwater superoleophobicity-superoleophilicity on laser modified titanium surfaces, Journal of Materials Chemistry A, 3, 10703-10709 (2015). https://doi.org/10.1039/C5TA01782C
  22. L. Chen, T. Yang, Y. Niu, X. Mu, Y. Gong, Y. Feng, N. Rooij, Y. Wang, H. Li, and G. Zhou. Building a smart surface with converse temperature-dependent wettability based on poly(acrylamide-co-acrylonitrile). Chem. Commun., 56, 2837-2840 (2020). https://doi.org/10.1039/c9cc09479b
  23. Y. Song et al., Temperature-tunable wettability on bioinspired structured graphene surface for fog collection and unidirectional transport. Nanoscale, 10, 3813-3822 (2018). https://doi.org/10.1039/c7nr07728a
  24. E. Velayi and R. Norouzbeigi, Annealing temperature dependent reversible wettability switching of micro/nano structured ZnO superhydrophobic surfaces. Appl. Surf. Sci. , 441, 156-164 (2018). https://doi.org/10.1016/j.apsusc.2018.02.005
  25. T. Banuprasad, T. Vinay, C. Subash, S. Varghese, S. George, S. Varanakkottu. Fast transport of water, droplets over a thermo-switchable surface using rewritable, wettability gradient. ACS Applied Materials & Interfaces, 9, 28046-28054 (2017). https://doi.org/10.1021/acsami.7b07451
  26. L. Chang, H. Liu, Y. Ding, J. Zhang, L. Li, X. Zhang, M. Liu, L. Jiang. A smart surface with switchable wettability by an ionic liquid. Nanoscale, 9, 5822-5827 (2017). https://doi.org/10.1039/C7NR00304H
  27. W. Zhang, N. Liu, Q. Zhang, R. Qu, Y. Liu, X. Li, Y. Wei, L. Feng, and L. Jiang, Thermo-driven controllable emulsion emulsion separation by a polymer decorated membrane with switchable wettability, Angew. Chem. Int. Ed., 57, 5740-5745 (2018). https://doi.org/10.1002/anie.201801736
  28. F. Mugele and J. Baret, Electrowetting: From basics to applications, Journal of Physics Condensed Matter, 17, R705-R774 (2005). https://doi.org/10.1088/0953-8984/17/28/R01
  29. J. Lahann, S. Mitragotri, T. Tran, K. Kaido, J. Sundaram, I. Choi, S. Hoffer, G. Somorjai, and R. Langer, A reversibly switching surface, Science, 299, 371-374 (2003). https://doi.org/10.1126/science.1078933
  30. R. Pernites, C. Santos, M. Maldonado, R. Ponnapati, D. Rodrigues, and R. Advincula, Tunable protein and bacterial cell adsorption on colloidally templated superhydrophobic polythiophene films, Chemistry of Materials, 24, 870-880 (2012). https://doi.org/10.1021/cm2007044
  31. Q. Zhang, J. Kang, Z. Xie, X. Diao, Z. Liu, and J. Zhai, Highly efficient gating of electrically actuated nanochannels for pulsatile drug delivery stemming from a reversible wettability switch, Adv. Mater., 30, 1703323 (2018). https://doi.org/10.1002/adma.201703323
  32. Q. Wang, B. Xu, Q. Hao, D. Wang, H. Liu, and L. Jiang, In situ reversible underwater superwetting transition by electrochemical atomic alternation, Nature Communications, 10, 1212 (2019). https://doi.org/10.1038/s41467-019-09201-1
  33. Bin Du, Feng Chen, Rubai Luo, Huailin Li, Shisheng Zhou, Shiyi Liu, and Jie Hu, Superhydrophobic surfaces with ph-induced switchable wettability for oil-water separation, ACS OMEGA, 4, 16508-16516 (2019). https://doi.org/10.1021/acsomega.9b02150
  34. Xinjuan Zeng, Kangquan Yang, Chaoyun Huang, Kai Yang, Shouping Xu, Li Wang, Pihui Pi, and Xiufang Wen, Novel ph-responsive smart fabric: from switchable wettability to controllable on-demand oil/water separation, ACS Sustainable Chemistry & Engineering, 7, 368-376 (2019). https://doi.org/10.1021/acssuschemeng.8b03675
  35. Meixiao Cheng, Hui He, Hongxiang Zhu, Wei Guo, Wenbo Chen, Fei Xue, Shile Zhou, Xingjuan Chen, and Shuangfei Wang, Preparation and properties of pH-responsive reversible-wettability biomass cellulose-based material for controllable oil/water separation, Carbohydrate Polymers, 203, 246-255 (2019). https://doi.org/10.1016/j.carbpol.2018.09.051
  36. Zhongjun Cheng, Hua Lai, Ying Du, Kewei Fu, Rui Hou, Chong Li, Naiqing Zhang, and Kening Sun, pH-induced reversible wetting transition between the underwater superoleophilicity and superoleophobicity, ACS Applied Materials & Interfaces, 6, 636-641 (2014). https://doi.org/10.1021/am4047393
  37. Zhao Dang, Libin Liu, Yan Li, Yu Xiang, Gailan Guo, In situ and ex situ ph-responsive coatings with switchable wettability for controllable oil/water separation, ACS Applied Materials & Interfaces, 8, 31281-31288 (2016). https://doi.org/10.1021/acsami.6b09381
  38. S. Fujii, E. S. Read, B. P. Binks, and S. P. Armes, Stimulus-Responsive Emulsifiers Based on Nanocomposite Microgel Particles, Adv. Mater., 8, 1014-1018 (2005).
  39. Yuheng Xu, Zedong Zhang, Xiangfei Geng, Jing Jin, Muzaffar Iqbal, Aijuan HanBin Ding, and Junfeng Liu, Smart carbon foams with switchable wettability for fast oil recovery, Carbon, 149, 242-247 (2019). https://doi.org/10.1016/j.carbon.2019.04.039
  40. Wenjing Ma, Mengjie Zhang, Yuansheng Li, Mengmeng Kang, Chaobo Huang, and Guodong Fu, Flexible, durable and magnetic nanofibrous membrane with pH-switchable wettability for efficient on-demand oil/water separation, Environmental Science Nano, 6, 3699-3711 (2019). https://doi.org/10.1039/C9EN01023H
  41. B. Liu and F. F. Lange, Pressure induced transition between superhydrophobic states: Configuration diagrams and effect f surface feature size, Colloid & Interface Science, 298, 899-909 (2006). https://doi.org/10.1016/j.jcis.2006.01.025
  42. J. Li, Z. Jing, F. Zha, Y. Yang, Q. Wang and Z. Lei, Facile, Spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of micro-droplets with different volumes, ACS Applied Materials & Interfaces, 6, 8868-8877 (2014). https://doi.org/10.1021/am5015937
  43. K. Feng, G. Hong, J. Liu, M. Li, C. Zhou and M. Liu, Fabrication of high performance superhydrophobic coatings by spray-coating of polysiloxane modified halloysite nanotubes, Chemical Engineering, 331, 744-754 (2018). https://doi.org/10.1016/j.cej.2017.09.023
  44. J. Zhang and S. Seeger, Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption, Advanced Functional Materials, 21, 4699-4704 (2015). https://doi.org/10.1002/adfm.201101090
  45. Jaroslav Mosnacek, Anton Popelk, Josef Osicka, Jaroslav Filip, Marketa Ilcikova, Jozef Kollar, Ammar B. Yousaf, Tomas Bertok, Jan Tkac, and Peter Kasak, Modulation of wettability, gradient and adhesion on self-assembled monolayer by counterion exchange and pH, Colloid & Interface Science, 514, 511-521 (2018).
  46. Shu-Han Hsu, David N. Reinhoudt, Jurriaan Huskens, and Aldrik H. Velders, Lateral interactions at functional monolayers, Materials Chemistry, 21, 2428-2444 (2011). https://doi.org/10.1039/C0JM02696D
  47. Shuang Li, Paul Cao, Ramon Colorado, Xiaoping Yan, Irmgard Wenzl, Olga E. Shmakova, Michael Graupe, T. Randall Lee, and Scott S. Perry, Local packing environment strongly influences the frictional properties of mixed CH3- and CF3-terminated alkanethiol SAMs on Au(111), Langmuir, 21, 933-936 (2005). https://doi.org/10.1021/la0488607
  48. Josef Osicka, Marketa Ilcikova, Anton Popelka, Jaroslav Filip, Tomas Bertok, Jan Tkac, and Peter Kasak, Simple, Reversible, and Fast modulation in superwettability, gradient, and adsorption by counterion exchange on self-assembled monolayer, Langmuir, 32, 54915-55499 (2016).
  49. Lili Ma, Jinmei He, Jiaxin Wang, Yichen Zhou, Yu Zhao, Yuangang Li, Xiangrong Liu, Lei Peng, and Mengnan Qu, Functionalized Superwettable fabric with switchable wettability for fficient oily wastewater purification, in situ chemical reaction system separation, and photocatalysis degradation, ACS Applied Materials & Interfaces, 11, 43751-43765 (2019). https://doi.org/10.1021/acsami.9b15952
  50. Liping Wen, Ye Tian, Lei Jiang, Bioinspired super-wettability from fundamental research to practical applications, Angew. Chem. Int. Ed., 54, 3387-3399 (2015). https://doi.org/10.1002/anie.201409911
  51. Changrui Gao, Zhongxue Sun, Kan Li, Yuning Chen, Yingze Cao, Shiyan Zhang, and Lin Feng, Integrated oil separation and water purification by a double-layer TiO2-based mesh, Energy & Environmental Science, 6, 1147-1151 (2013). https://doi.org/10.1039/c3ee23769a
  52. Ibrahim M. A. ElSherbiny, Ahmed S. G. Khalil, and Mathias Ulbricht, Tailoring Surface characteristics of polyamide thin-film composite membranes toward pronounced switchable wettability, Advanced Materials Interfaces, 6, 1801408 (2019). https://doi.org/10.1002/admi.201801408
  53. I. M. A. El-Sherbiny, A. S. G. Khalil, M. Ulbricht, Surface micro-patterning as a promising platform towards novel polyamide thinfilm composite membranes of superior performance, Membrane Science, 529, 11-22 (2017). https://doi.org/10.1016/j.memsci.2017.01.046
  54. Sanchuan Yu, Zhenhua Lu, Zhihai Chen, Xuesong Liu, Meihong Liu, and Congjie Gao, Surface modification of thin-film composite polyamide reverse osmosis membranes by coating N-isopropylacrylamide-co-acrylic acid copolymers for improved membrane properties, Membrane Science, 371, 293-306 (2011). https://doi.org/10.1016/j.memsci.2011.01.059
  55. Ho Sun Lim, Joong Tark Han, Donghoon Kwak, Meihua Jin, and Kilwon Cho, Photoreversibly switchable superhydrophobic surface with erasable and rewritable pattern, J. Am. Chem. Soc, 128, 14458-14459 (2006). https://doi.org/10.1021/ja0655901