Recent Research Trend in Functional Glasses Through Computational and Theoretical Modeling

전산모델링 기반 기능성 유리 소재 연구동향

  • Ahn, Yong Nam (Department of Chemical and Biological Engineering, Gachon University)
  • 안용남 (가천대학교 화공생명공학과)
  • Published : 2021.06.30

Abstract

유리 소재는 뛰어난 기계적, 화학적, 광학 특성으로 인해 다양한 영역에서 광범위하게 활용되어 왔으며, 최근에는 특정 물성이 강화된 기능성 유리 수요가 다양한 산업 영역에서 급속히 증가하고 있다. 유리 소재 분야에서의 연구 개발은 유리 특유의 비정질 구조 및 다원소 조성 특성에 의한 복합성 때문에 전통적으로 경험에 기반한 실험 기법에 의존하여 왔다. 그러나 적용 분야에 따른 맞춤형 물성 강화에 대한 필요성이 증대됨에 따라, 핵심 물성 발현 원리 등을 원자 단위에서 이해하고 이를 바탕으로 기능성 유리 소재를 설계하는 접근법이 주목받고 있다. 원자단위 시뮬레이션 및 이론 기반 모델링은 유리 소재의 다양한 물성과 조성 변화에 따른 원자 구조의 상관관계를 매우 효율적으로 분석할 수 있는 기법이다. 본 기고문 에서는 밀도범함수이론, 분자동역학 및 위상속박이론을 활용한 기능성 유리 소재 개발 및 연구 동향에 대해서 소개하고자 한다.

Keywords

References

  1. T. Vogt and T. Shinbrot, Editorial: Overlooking glass?, Phys. Rev. Appl., 3, 050001 (2015).
  2. E. A. Abou Neel, D. M. Pickup, S. P. Valappil, R. J. Newport, and J. C. Knowles, Bioactive functional materials: A perspective on phosphase-based glasses, J. Mater. Chem., 19, 690-701 (2009). https://doi.org/10.1039/b810675d
  3. J. C. Mauro, A. Tandia, K. D. Vargheese, Y. Z. Mauro, and M. M. Smedskjaer, Accelerating the design of functional glasses through modeling, Chem. Mater., 28, 4267-4277 (2016). https://doi.org/10.1021/acs.chemmater.6b01054
  4. T. Han, N. Stone-Weiss, J. Huang, A. Goel, and A. Kumar, Machine learning as a tool to design glasses with controlled dissolution for healthcare applications, Acta Biomaterialia, 107, 286-298 (2020). https://doi.org/10.1016/j.actbio.2020.02.037
  5. X. Zhao, Q. Zhao, J. Yu, and B. Liu, Development of multifunctional photoactive self-cleaning glasses, J. Non-Cryst. Solids., 354, 1424-1430 (2008). https://doi.org/10.1016/j.jnoncrysol.2006.10.093
  6. S. Bishnoi, S. Singh, R. Ravinder, M. Bauchy, N. N. Gosvami, H. Kodamana, and N. M. A. Krishnan, Predicting Young's modulus of oxide glasses with sparse datasets using machine learning, J. Non-Cryst. Solids, 524, 119643 (2019) https://doi.org/10.1016/j.jnoncrysol.2019.119643
  7. K. Xu and J. Heo, New functional glasses containing semiconductor quantum dots, Phys. Scr., 014062 (2010)
  8. E. Rysiakiewicz-Pasek, A. Cizman, T. Antropova, Y. Gorokhovatsky, O. Pshenko, E. Fomicheva, and I. Drozdova, An insight into inorganic glasses and functional porous glass-based nanocomposites, Mater. Chem. Phys., 243, 122585 (2020) https://doi.org/10.1016/j.matchemphys.2019.122585
  9. A. K. Varshneya, Fundamental of Inorganic Glasses, Society of Glass Technology: Sheffield, U.K. (2006)
  10. E. Zanotto and F. A. B. Coutinho, How many non-crystalline solids can be made from all the elements of the periodic table?, J. Non-Cryst. Solids, 347, 285-288 (2004). https://doi.org/10.1016/j.jnoncrysol.2004.07.081
  11. M. D. Ediger and P. Harrowell, Perspective: Supercooled liquids and glasses, J. Chem. Phys., 137, 080901 (2012).
  12. G. R. Strbac, S. R. Lukic-Petrovic, D. D. Strbac, V. Benekou, A. Chrissanthopoulos, and S. N. Yannopoulos, Optical properties and structure of As-Sb chalcohalide glasses by raman scattering and density functional theory calculations, J. Phys. Chem. B, 124, 2950-2960 (2020). https://doi.org/10.1021/acs.jpcb.0c00799
  13. M. Profeta, M. Benoit, F. Mauri, and C. J. Pickard, First-principles calculation of the 17O NMR parameters in Ca oxide and Ca aluminosilicates: The partially covalent nature of the Ca-O bond, a challenge for density functional theory, J. Am. Chem. Soc., 126, 12628-12635 (2004). https://doi.org/10.1021/ja0490830
  14. G.-M. Rignanese, Dielectric properties of crystalline and amorphous transition metal oxides and silicates as potential high-k condidates: The contribution of density-functional theory, J. Phys.: Condens. Matter., 17, R357 (2005). https://doi.org/10.1088/0953-8984/17/7/R03
  15. L. Granasy and P. F. James, Non-classical theory of crystal nucleations: Application to oxide glasses: Review, J. Non-Cryst. Solids, 253, 210-230 (1999). https://doi.org/10.1016/S0022-3093(99)00354-3
  16. N. V. Tran, A. K. Tieu, H. Zhu, H. T. T. Ta, P. T. Sang, H. M. Le, and T. D. Ta, Insights into the tribochemistry of slidling iron oxide surfaces lubricated by sodium silicate glasses: An ab initio molecular dynamics study, Appl. Surf. Sci., 528, 147008 (2020). https://doi.org/10.1016/j.apsusc.2020.147008
  17. G. Mountjoy, B. M. Al-Hasni, and C. Storey, Structural organisation in oxide glasses from molecular dynamics modelling, J. Non-Cryst. Solids, 357, 2522-2529 (2011). https://doi.org/10.1016/j.jnoncrysol.2011.01.015
  18. J.-M. Delaye and D. Ghaleb, Dynamic processes during displacement cascades in oxide glasses: A molecular-dynamics study, Phys. Rev. B, 61, 14481 (2000). https://doi.org/10.1103/physrevb.61.14481
  19. L. Deng and J. Du, Develoment of effective empirical potentials for molecular dynamics simulations of the structures and properties of boroaluminosilicate glasses, J. Non-Cryst. Solids, 453, 177-194 (2016). https://doi.org/10.1016/j.jnoncrysol.2016.09.021
  20. F. Lodesani, M. C. Menziani, H. Hijiya, Y. Takato, S. Urata, and A. Pedone, Structural origins of the mixed alkali effect in alkali aluminosilicate glasses: Molecular dynamics study and its assessment, Sci. Rep., 10, 2906 (2020). https://doi.org/10.1038/s41598-020-59875-7
  21. M. Wang, M. M. Smedskjaer, J. C. Mauro, and M. Bauchy, Modifier clustering and avoidance principle in borosilicate glasses: A molecular dynamics study, J. Chem. Phys., 150, 044502 (2019).
  22. L. Deng and J. Du, Development of boron oxide potentials for computer simulations of multicomponent oxide glasses, J. Am. Ceram. Soc., 102, 2482-2505 (2019). https://doi.org/10.1111/jace.16082
  23. K. Yang, X. Xu, B. Yang, B. Cook, H. Ramos, N. M. A. Krishnan, M. M. Smedskjaer, C. Hoover, and M. Bauchy, Predicting the Young's modulus of silicate glasses using high-throughput molecular dynamics simulations and machine learning, Sci. Rep., 9, 8739 (2019). https://doi.org/10.1038/s41598-019-45344-3
  24. S. Urata, R. Ando, M. Ono, and Y. Hayashi, Molecular dynamics study on nano-particle reinforced oxide glass, J. Am. Ceram. Soc., 101, 2266-2276 (2018). https://doi.org/10.1111/jace.15378
  25. M. Ren, L. Deng, and J. Du, Surface structure of sodium borosilicate glasses from molecular dynamics simulations, J. Am. Ceram. Soc., 100, 2516-2524 (2017). https://doi.org/10.1111/jace.14654
  26. R. S. Welch, C. J. Wilkinson, J. C. Mauro, and C. B. Bragatto, Charge carrier mobility of alkali silicate glasses calculated by molecular dynamics, Pront. Mater., 6, 121 (2019).
  27. M. Bauchy, Deciphering the atomic genome of glasses by topological constraint theory and molecular dynamics: A review, Comp. Mater. Sci., 159, 95-102 (2019). https://doi.org/10.1016/j.commatsci.2018.12.004
  28. K. Yang, B. Yang, X. Xu, C. Hoover, M. M. Smedskjaer, and M. Bauchy, Predicting of the Young's modulus of silicate glasses by topological constraint theory, J. Non-Cryst. Solids, 514, 15-19 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.03.033
  29. Q. Zheng and H. Zeng, Progress in modeling of glass properties using topological constraint theory, Inter. J. Appl. Glass Sci., 11, 432-441 (2020). https://doi.org/10.1111/ijag.15105
  30. Y. Yang, C. J. Wilkinson, K.-H. Lee, K. Doss, T. D. Bennett, Y. K. Shin, A. C. T. van Duin, and J. C. Mauro, Prediction of the glass transition temperatures of zeolitic imidazolate glasses through topological constraint theory, J. Phys. Chem. Lett., 9, 6985-6990 (2018). https://doi.org/10.1021/acs.jpclett.8b03348
  31. A. K. Varshneya, Chemical strengthening of glass: Lessons learned and yet to be learned, Int. J. Appl. Glass Sci., 1, 131 (2010). https://doi.org/10.1111/j.2041-1294.2010.00010.x
  32. A. K. Varshneya, The physics of chemical strengthening of glass: Room for a new view, J. Non-Cryst. Solids, 356, 2289 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.05.010
  33. S. Karlsson, B. Jonson, and C. Stalhandske, The technology of chemical glass strengthening: A review, Eur. J. Glass Sci. Technol. A, 51, 41 (2010).
  34. R. Gy, Ion exchange for glass strenghening, Mater. Sci. Eng. B, 149, 159 (2008). https://doi.org/10.1016/j.mseb.2007.11.029
  35. S. S. Kistler, Stresses in glass produced by nonuniform exchange of monovalent ions, J. Am. Ceram. Soci., 45, 59 (1962). https://doi.org/10.1111/j.1151-2916.1962.tb11081.x
  36. O. Richmond, W. C. Leslie, and H. A. Wreidt, Theory of residual stresses due to chemical concentration gradients, Trans. ASM, 57, 294 (1964).
  37. A. Tandia, K. D. Vargheese, J. C. Mauro, and A. K. Varshneya, Atomistic understanding of the network dilation anormaly in ion-exchanged glass, J. Non-Cryst. Solids, 358, 316-320 (2012). https://doi.org/10.1016/j.jnoncrysol.2011.09.034
  38. J. C. Mauro, Y. Z. Yue, A. J. Ellison, P. K. Gupta, and D. C. Allan, Viscosity of glass-forming liquids, Proc. Natl Acad. Sci. USA, 106, 19780-19784 (2009). https://doi.org/10.1073/pnas.0911705106
  39. J. C. Mauro, A. J. Ellison, D. C. Allan, and M. M. Smedskjaer, Topological model for the viscosity of multicomponent glass-forming liquids, Inter. J. Appl. Glass Sci., 4, 408-413 (2013). https://doi.org/10.1111/ijag.12009
  40. W. Carvalho, P. Dumas, J. Corset, and V. Neuman, Raman spectra and oxygen-rated absorption bands in pure silica core fibers, J. Raman Spectrosc., 16, 330-331 (1985). https://doi.org/10.1002/jrs.1250160510
  41. K. Kajihara, H. Kamioka, M. Hirano, T. Miura, L. Skuja, and H. Hosono, Interstitial oxygen molecules in amorphous SiO2. III. Measurements of dissolution kinetics, diffusion coefficient, and solubility by infrared photoluminescence, J. Appl. Phys., 98, 013529 (2005).
  42. M. Lancry, B. Poumellec, J. Canning, K. Cook, J.-C. Poulin, and F. Brisset, Ultrafast nanoporous silica formation driven by femtosecond laser irradiation: In the heart of nanogratings, Laser Photonics Rev., 7, 953-962 (2013). https://doi.org/10.1002/lpor.201300043
  43. A. V. Redkov, V. G. Melehin, and A. A. Lipovskii, How does thermal poling produce interstitial molecular oxygen in silicate glasses?, J. Phys. Chem. C, 119, 17298-17307 (2015). https://doi.org/10.1021/acs.jpcc.5b04513
  44. L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, Oxygen-excess-rated point defects in glassy/amorphous SiO2 and related materials, Nucl. Instrum. Methods Phys. Res., Sect. B, 286, 159-168 (2012) https://doi.org/10.1016/j.nimb.2012.02.038
  45. K. Kajihara, H. Kamioka, M. Hirano, T. Miura, L. Skuja, and H. Hosono, Interstitial oxygen molecules in amorphous SiO2. II. The influence of common dopants (SiOH, SiF, and SiCl groups) and fictive temperature on the decay of singlet photoluminescence, J. Appl. Phys., 98, 013528 (2005).
  46. R. Schmidt and E. Afshari, Collisional deactivation of O2(1Δg) by solvent molecules. Comparative experiments with 16O2 and 18O2, Berichte Bunsenges. Fur Phys. Chem., 96, 788-794 (1992). https://doi.org/10.1002/bbpc.19920960610
  47. M. Zanatta, G. Baldi, R. S. Brusa, W. Egger, A. Fontana, E. Gilioli, S. Mariazzi, G. Monaco, L. Ravelli, and F. Sacchetti, Structural evolution and medium range order in permanently densified vitreous SiO2, Phys. Rev. Lett., 112, 045501 (2014).
  48. L. Skuja, K. Smits, A. Trukhin, F. Gahbauer, R. Ferber, M. Auzinsh, L. Busaite, L. Razinkovas, M. Mackoit-Sinkeviciene, and A. Alkauskas, Dynamics of singlet oxygen molecule trapped in silica glass studied by luminescence polarization anisotropy and density functional theory, J. Phs. Chem. C, 124, 7244-7253 (2020). https://doi.org/10.1021/acs.jpcc.9b11581
  49. D. E. Carlson, K. W. Hang, and G. F. Stockdale, Electrode 'polarization' in alkali-containing glasses, J. Am. Ceram. Soc., 55, 337-341 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb11305.x
  50. U. K. Krieger and W. A. Lanford, Field assisted transport of Na+, Ca2+ ions and electrons in commercial soda-lime glass: I. experimental, J. Non-Cryst. Solids, 102, 50-61 (1988). https://doi.org/10.1016/0022-3093(88)90112-3
  51. H. An and S. Fleming, Second-order optical nonlinearity and accompanying near-surface structural modifications in thermally poled soda-lime silicate glasses, J. Opt. Soc. Am. B, 23, 2303 (2006). https://doi.org/10.1364/JOSAB.23.002303
  52. W. Margulis and F. Laurell, Fabrication of waveguides in glasses by a poling procedure, Appl. Phys. Lett., 71, 2418-2420 (1997). https://doi.org/10.1063/1.120079
  53. M. Dussauze, E. I. Kamitsos, E. Fargin and V. Rodriguez, Refractive index distribution in the non-linear optical layer of thermally poled oxide glasses, Chem. Phys. Lett., 470, 63-66 (2009). https://doi.org/10.1016/j.cplett.2009.01.007
  54. M. Qiu, F. Pi, G. Orriols, and M. Bibiche, Signal damping of second-harmonic generation in poled soda-lime silicate glass, J. Opt. Soc. Am. B, 15, 1362-1365 (1998). https://doi.org/10.1364/JOSAB.15.001362
  55. R. A. Myers, N. Mukherjee, and S. R. Brueck, Large second-order nonlinearity in poled fused silica, Opt. Lett., 16, 1732-1734 (1991). https://doi.org/10.1364/OL.16.001732
  56. A. Tandia, M. Reveil, K. D. Vargheese, J. Luo, J. C. Mauro, and P. Clancy, Modeling the thermal poling of glasses using molecular dynacmis. Part 1: Effect on glass structure, J. Non-Cryst. Solids, 461, 98-103 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.01.045
  57. P. Ostojic and R. McPherson, A review of indentation fracture theory: Its development, principles and limitations, IJFr, 33, 297-312 (1987).
  58. B. Lawn and R. Wilshaw, Indentation fracture: Principles and applications, JMatS, 10, 1049-1081 (1975).
  59. R. F. Cook and G. M. Pharr, Direct observation and analysis of indentation cracking in glasses and ceramics, J. Am. Ceram. Soc., 73, 787-817 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05119.x
  60. B. R. Lawn, Indentation of ceramics with spheres: A century after hertz, J. Am. Ceram. Soc., 81, 1977-1994 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02580.x
  61. B. R. Lawn, Fracture and deformation in brittle solids: A perspective on the issue of scale, J. Mater. Res., 19, 22-29 (2004). https://doi.org/10.1557/jmr.2004.0003
  62. J. Luo, K. D. Vargheese, A. Tandia, G. Hu, and J. C. Mauro, Crack nucleation criterion and its application to impact indentation in glasses, Sci. Rep., 6, 23720 (2016). https://doi.org/10.1038/srep23720
  63. S. M. Wiederhorn, T. Fett, J. P. Guin, and M. Ciccotti, Griffith cracks at the nanoscale, Int. J. Appl. Glass Sci., 4, 76-86 (2013). https://doi.org/10.1111/ijag.12025
  64. Y. N. Ahn and J. T. Harris, The effect of individual elements of alkali aluminosilicate glass on scratch characteristics: A molecular dynamics study, J. Non-Cryst. Solids, 536, 119840 (2020). https://doi.org/10.1016/j.jnoncrysol.2019.119840
  65. Z. Zhang, Z. Shao, Y. Luo, P. An, M. Zhang, and C. Xu, Hydrophobic, transparent and hard silicon oxynitride coating from perhydropolysilazane, Polym. Int., 64, 971-978 (2015). https://doi.org/10.1002/pi.4871
  66. C.-H. Chen, S.-Y. Li, A. S. T. Chiang, A. T. Wu, and Y. S. Sun, Scratch-resistant zeolite anti-reflective coating on glass for solar applications, Sol. Energy Mater. Sol. Cells, 95, 1694-1700 (2011). https://doi.org/10.1016/j.solmat.2011.01.032
  67. Y.-C. Sheen, Y.-C. Huang, C.-S. Liao, H.-Y. Chou, and F.-C. Chang, New approach to fabricate an extremely super-amphiphobic surface based on fluorinated silica nanoparticles, J. Polym. Sci. B Polym. Phys., 46, 1984-1990 (2008). https://doi.org/10.1002/polb.21535
  68. V. A. Ganesh, S. S. Dinachali, S. Jayaraman, R. Sridhar, H. K. Raut, A. Gora, A. Baji, A. S. Nair, and S. Ramakrishna, One-step fabrication of robust and optically transparent slippery coatings, RSC Adv., 4, 55263-55270 (2014). https://doi.org/10.1039/C4RA08655D
  69. P. Phanthong, G. Guan, S. Karnjanakom, X. Hao, Z. Wang, K. Kusakabe, and A. Abudula, Amphiphobic nanocellulose-modified paper: Fabrication and evaluation, RSC Adv., 6, 13328-13334 (2016). https://doi.org/10.1039/C5RA24986D
  70. Y. N. Ahn, S. H. Lee, and S. Y. Oh, Adsorption characteristics of silane-functionalized perfluoropolyether on hydroxylated glassy silica surfaces: A multiscale approach, Appl. Surf. Sci., 496, 143699 (2019). https://doi.org/10.1016/j.apsusc.2019.143699
  71. S. H. Lee, Y. N. Ahn, V. Botu, R. J. Stewart, and S. Y. Oh, Enhancement of adhesion strength of perfluoroalkylpolyethers on rough glassy silica for antismudge coatings, ACS Appl. Polym. Mater., 1, 2613-2621 (2019). https://doi.org/10.1021/acsapm.9b00499