Multiscale Simulations of Polymeric Liquids under Flow conditions

유동하 고분자 용융체의 다중스케일 전산모사 기법과 응용

  • Kim, Jun Mo (Department of Chemical Engineering, Kyonggi University)
  • 김준모 (경기대학교 창의공과대학 화학공학과)
  • Published : 2021.06.30

Abstract

고분자 시스템의 경우 매우 상이한 시간 및 길이 스케일(time and length scale)에 연관된 복잡한 내부 구조(internal structure)를 가지고 있기 때문에 전통적인 실험 방법만으로는 체계적이고 종합적인 연구가 쉽지 않다. 최근 다양한 시간 및 길이 스케일에 연관된 연구를 진행할 수 있는 다중 스케일 전산 모사(multiscale computer simulation) 방법은 이러한 고분자 시스템 연구에 있어서 새로운 대안으로 각광받고 있다. 본 논문에서는 최근 급격한 발전을 이룬 고분자 용액(polymeric liquid) 시스템에 대한 평형(equilibrium) 및 비평형(nonequilibrium) 전산 모사(computer simulation) 방법들에 관해 소개하고 이를 통합적으로 해석할 수 있는 다중 스케일 전산 모사 방법에 대해 여러 가지 사례를 들어 살펴보았다.

Keywords

References

  1. M. P. Allen and D. J. Tildesely, Computer Simulation of Liquids, Oxford University Press, Oxford, UK (1989).
  2. D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, San Diego, CA, USA (1996).
  3. H. C. Ottinger, Stochastic Processes in Polymeric Fluids, Springer, Berlin, Germany (1996).
  4. K. Kremer and G. S. Grest, Dynamics of entangled linear polymer melts: A molecular dynamics simulation, J. Chem. Phys., 92, 5057-5086 (1990). https://doi.org/10.1063/1.458541
  5. H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, 2nd ed. Pearson, Edinburgh, UK (2007).
  6. V. Harmandaris, Quantitative study of equilibrium and non-equilibrium polymer dynamics through systematic hierarchical coarse-graining simulations, Korea-Australia Rheology J., 26(1), 15-28 (2014). https://doi.org/10.1007/s13367-014-0003-7
  7. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids, 2nd ed. ANU Press, Canberra, Australia (2007).
  8. C. Baig, B. J. Edwards, D. J. Keffer, and H. D. Cochran, A proper approach for nonequilibrium molecular dynamics simulations of planar elongational flow, J. Chem. Phys., 122, 114103 (2005). https://doi.org/10.1063/1.1819869
  9. R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, vol. 2 Kinetic Theory, 2nd ed., John Wiley & Sons, New York, USA (1987).
  10. R. Everaers, S. K. Sukumaran, G. S. Grest, C. Svaneborg, A. Sivasubramanian, and K. Kremer, Rheology and microscopic topology of entangled polymeric liquids, Science, 303 (5659), 823-826 (2004). https://doi.org/10.1126/science.1091215
  11. C. Tzoumanekas and D. N. Theodorou, Topological analysis of linear polymer melts: A statistical approach, Macromolecular, 39(13), 4592-4604 (2006). https://doi.org/10.1021/ma0607057
  12. M. Kroger, Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems, Comput. Phys. Commun., 168, 209-232 (2005). https://doi.org/10.1016/j.cpc.2005.01.020
  13. J. M. Kim, D. J. Keffer, M. Kroger, and B. J. Edwards, Rheological and entanglement characteristics of linear chain polyethylene lizquids in planar Couette and planar elongational flows, J. Non-Newtonian Fluid Mech., 152(1-3), 168-183 (2008). https://doi.org/10.1016/j.jnnfm.2007.03.005
  14. J. M. Kim, D. J. Keffer, B. J. Edwards, and C. Baig, Visualization of conformational changes of linear alkanes & short polyethylenes under shear and elongational flows, J. Mol. Graph. Mod., 26(7), 1046-1056 (2008). https://doi.org/10.1016/j.jmgm.2007.09.001
  15. J. M. Kim, B. J. Edwards, D. J. Keffer, and B. Khomami, Single-chain dynamics of linear polyethylene liquids under shear flow, Phys. Lett. A, 373, 769-772 (2009). https://doi.org/10.1016/j.physleta.2008.12.062
  16. J. M. Kim, B. J. Edwards, D. J. Keffer, and B. Khomami, Dynamics of individual molecules of linear polyethylene liquids under shear: Atomistic simulation and comparison with a free-draining bead-rod chain, J. Rheol., 54, 283-310 (2010). https://doi.org/10.1122/1.3314298
  17. J. M. Kim and C. Baig, Precise analysis of polymer rotational dynamics, Sci. Rep., 6, 19127 (2016). https://doi.org/10.1038/srep19127
  18. J. M. Kim, P. S. Stephanou, B. J. Edwards, and B. Khomami, A mean-field anisotropic diffusion model for unentangled polymeric liquids and semi-dilute solutions: Model development and comparison with experimental and simulation data, J. Non-Newtonian Fluid Mech., 166, 593-606 (2011). https://doi.org/10.1016/j.jnnfm.2010.12.011
  19. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics, Oxford University Press, Oxford, UK (1986).
  20. M. Rubinstein and R. H. Colby, Polymer Physics, Oxford University Press, Oxford, UK (2003).
  21. D. J. Rohse, The influence of chemical structure on polyolefin melt rheology and miscibility, J. Macromol Sci. Part C: Polym. Rev., 45 289-308 (2005). https://doi.org/10.1080/15321790500304098
  22. J. M. Kim and C. Baig, Communication: Role of short chain branching in polymer structure and dynamics, J. Chem. Phys., 144, 081101 (2016).
  23. S. H. Jeong, J. M. Kim, and C. Baig, Rheological influence of short-chain branching for polymeric materials under shear with variable branch density and branching architecture, Macromolecules, 50, 4491-4500 (2017). https://doi.org/10.1021/acs.macromol.7b00544
  24. S. H. Jeong, J. M. Kim, and C. Baig, Rheological behaviors of H-shaped polymers incorporated with short branches under shear and elongational flows via FENE-Rouse model, J. Rheol., 62, 1115 (2018). https://doi.org/10.1122/1.5026530
  25. G. Tsolou, N. Stratikis, C. Baig P. S. Stephanou, and V. G. Mavrantzas, Melt structure and dynamics of unentangled polyethylene rings: Rouse theory, atomistic molecular dynamics simulation, and comparison with the linear analogues, Macromolecules, 43, 10692-10713 (2010). https://doi.org/10.1021/ma1017555
  26. S. H. Jeong, S. Cho, E. J. Roh, T. Y. Ha, J. M. Kim, and C. Baig, Intrinsic surface characteristics and dynamic mechanisms of ring polymer solutions and melts under shear flow, Macromolecules, 53, 10051 (2020). https://doi.org/10.1021/acs.macromol.0c01866
  27. S. Jeong, S. Cho, J. M. Kim, and C. Baig, Molecular mechanisms of interfacial slip for polymer melts under shear flow, J. Rheol., 61, 253-264 (2017). https://doi.org/10.1122/1.4974907
  28. S. Cho, S. Jeong, J. M. Kim, and C. Baig, Molecular dynamics for linear polymer melts in bulk and confined systems under shear flow, Sci. Rep., 7, 9004 (2017). https://doi.org/10.1038/s41598-017-08712-5
  29. S. Jeong, J. M. Kim, S. Cho, and C. Baig, Effect of short-chain branching on interfacial polymer structure and dynamics under shear flow, Soft Matter., 13, 8644 (2017). https://doi.org/10.1039/c7sm01644a
  30. S. Jeong, S. Cho, J. M. Kim, and C. Baig, Interfacial molecular structure and dynamics of confined ring polymer melts under shear flow, Macromolecules, 51, 4670 (2018). https://doi.org/10.1021/acs.macromol.8b00395
  31. P. G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, New York, USA (1979).
  32. I. Carmesin and K. Kremer, Static and dynamic properties of two-dimensional polymer melts, J. Phys. (France), 51, 915-932 (1990). https://doi.org/10.1051/jphys:019900051010091500
  33. J. Kumaki, Observation of polymer chain structure in two-dimensional films by atomic force microscopy, Polym. J., 48, 3-14 (2008). https://doi.org/10.1038/pj.2015.67
  34. J. Kim, J. M. Kim, and C. Baig, Intrinsic chain stiffness in flexible linear polymers under extreme confinement, Polymer, 213, 123308 (2021). https://doi.org/10.1016/j.polymer.2020.123308
  35. S. H. Jeong, J. M. Kim, J. Yoon, C. Tzoumanekas, M. Kroger, and C. Baig, Influence of molecular architecture on entanglement network: topological analysis of linear, long- and short-chain branched polyethylene melts via Monte Carlo simulation, Soft Matter., 12, 3770- 3786 (2016). https://doi.org/10.1039/c5sm03016a
  36. C. M. Schroeder, R. E. Teixeira, Eric S. G. Shaqfeh, and S. Chu, Characteristic periodic motion of polymers in shear flow, Phys. Rev. Lett., 95, 018301 (2005).
  37. J. Yoon, J. Kim, and C. Baig, Nonequilibrium molecular dynamics study of ring polymer melts under shear and elongation flows: A comparison with their linear analogues, J. Rheol., 60, 673-685 (2016). https://doi.org/10.1122/1.4954246