Development and Application of Perovskite-Polymer Composites Materials

페로브스카이트-고분자 복합소재 기술개발 및 응용

  • Kim, Hyun Gi (Department of chemical engneering, Kyung Hee University)
  • 김현기 (경희대학교 화학공학과)
  • Published : 2021.02.28

Abstract

페로브스카이트(perovskite) 결정 구조를 갖는 물질은 매우 뛰어난 광학적, 전기적 특성을 갖고 있으므로, 최근 들어 태양전지, LED, 광검출기 등의 다양한 분야에서 기술적 한계를 극복할 수 있는 가능성을 제시하고 있다. 이러한 페로브스카이트 소재를 폭넓은 분야에서 실용적으로 활용하기 위해서는 소재 자체가 갖고 있는 뛰어난 특성을 지속할 수 있는 안정성이 향상된 기술의 접목이 무엇보다 절실히 필요한 실정이다. 본 기고문에서는 페로브스카이트 소재의 실용화를 앞당기기 위해 최근 활발히 연구가 진행되고 있는 페로브스카이트-고분자 복합소재 기술 개발 및 응용 분야에 대해 간략히 소개하고자 한다.

Keywords

References

  1. F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, and Y. Dong, Brightly luminescent and colortunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: Potential alternatives for display technology, ACS Nano, 9, 4533-4542 (2015). https://doi.org/10.1021/acsnano.5b01154
  2. H. Huang, A. S. Susha, S. V. Kershaw, T. F. Hung, and A. L. Rogach, Control of emission color of high quantum yield CH3NH3PbBr3 perovskite quantum dots by precipitation temperature, Adv. Sci., 2, 1500194 (2015). https://doi.org/10.1002/advs.201500194
  3. Z. Li, T. R. Klein, D. H. Kim, M. Yang, J. J. Berry, M. F. A. M. van Hest, and K. Zhu, Scalable fabrication of perovskite solar cells, Nat. Rev. Mater., 3(4), 18017-18020 (2018). https://doi.org/10.1038/natrevmats.2018.17
  4. K. Lin, J. Xing, L. N. Quan, F. P. G. de Arquer, X. Gong, J. Lu, L. Xie, W. Zhao, D. Zhang, C. Yan, W. Li, X. Liu, Y. Lu, J. Kirman, E. H. Sargent, Q. Xiong, and Z. Wei, Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent, Nature, 562(7726), 245-248 (2018). https://doi.org/10.1038/s41586-018-0575-3
  5. Y. Fang, Q. Dong, Y. Shao, Y. Yuan, and J. Huang, Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination, Nat. Photonics, 9(10), 679-686 (2015). https://doi.org/10.1038/nphoton.2015.156
  6. H. Wei, Y. Fang, P. Mulligan, W. Chuirazzi, H.-H. Fang, C. Wang, B. R. Ecker, Y. Gao, M. A. Loi, L. Cao, and J. Huang, Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals, Nat. Photonics, 10(5), 333-339 (2016). https://doi.org/10.1038/nphoton.2016.41
  7. Q. Chen, J. Wu, X. Ou, B. Huang, J. Almutlaq, A. A. Zhumekenov, X. Guan, S. Han, L. Liang, Z. Yi, Z. J. Li, X. Xie, Y. Wang, Y. Li, D. Fan, D. B. L. Teh, A. H. All, O. F. Mohammed, O. M. Bakr, T. Wu, M. Bettinelli, H. Yang, W. Huang, and X. Liu, All-Inorganic perovskite nanocrystal scintillators, Nature, 561(7721), 88-93 (2018). https://doi.org/10.1038/s41586-018-0451-1
  8. D. D. L. Chung, Polymer-matrix composites for microelectronics, Polymer & Polymer Composites, 8, 219-229 (2000).
  9. X. Wang, X. Lian, Z. Zhang, and H. Gao, Could nanocomposites continue the success of halide perovskites, ACS Energy Lett., 4, 1446-1454 (2019). https://doi.org/10.1021/acsenergylett.9b00580
  10. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, and A. Hagfeldt, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science, 354, 206-209 (2016). https://doi.org/10.1126/science.aah5557
  11. D. W. de Quilettes, S. M. Sarah, S. D. Stranks, H. Nagaoka, G. E. Eperon, M. E. Ziffer, H. J. Snaith, and D. S. Ginger, Impact of microstructure on local carrier lifetime in perovskite solar cells, Science, 348, 683-686 (2015). https://doi.org/10.1126/science.aaa5333
  12. S. Y. Leblebici, L. Leppert, Y. Li, S. E. R. Lillo, S. Wickenburg, E. Wong, J. Lee, M. Melli, D. Ziegler, D. K. Angell, D. F. Ogletree, P. D. Ashby, F. M. Toma, J. B. Neaton, and I. D. Sharp, A. Weber-bargioni, facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite, Nat. Energy, 1, 16093 (2016). https://doi.org/10.1038/nenergy.2016.93
  13. Y. Kutes, Y. Zhou, J. L. Bosse, J. Steffes, N. P. Padture, and B. D. Huey, Mapping the photoresponse of CH3NH3PbI3 hybrid perovskite thin films at the nanoscale, Nano Lett., 16, 3434-3441 (2016). https://doi.org/10.1021/acs.nanolett.5b04157
  14. T.-H. Han, J.-W. Lee, C. Choi, S. Tan, C. Lee, Y. Zhao, Z. Dai, N. D. Marco, S.-J. Lee, S.-H. Bae, Y. Yuan, H. M. Lee, Y. Huang, and Y. Yang, Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells, Nat. Commun., 10(520), 1-10 (2019). https://doi.org/10.1038/s41467-018-07882-8
  15. A. Yangui, D. Garrot, J. S. Lauret, A. Lusson, G. Bouchez, E. Deleporte, S. Pillet, E. E. Bendeif, M. Castro, S. Triki, Y. Abid, and K. Boukheddaden, Optical investigation of broadband whitelight emission in self-assembled organic-inorganic perovskite (C6H11NH3)2PbBr4, J. Phys. Chem. C, 119, 23638-23647 (2015). https://doi.org/10.1021/acs.jpcc.5b06211
  16. T. M. Koh, V. Shanmugam, J. Schlipf, L. Oesinghaus, P. Muller-Buschbaum, N. Ramakrishnan, V. Swamy, N. Mathews, P. P. Boix, and S. G. Mhaisalkar, Nanostructuring mixed-dimensional perovskites: A route toward tunable, efficient photovoltaics, Adv. Mater., 28, 3653-3661 (2016). https://doi.org/10.1002/adma.201506141
  17. A. B. Wong, M. Lai, S. W. Eaton, Y. Yu, E. Lin, L. Dou, A. Fu, and P. Yang, Growth and anion exchange conversion of CH3NH3PbX3 nanorod arrays for light-emitting diodes, Nano Lett., 15, 5519-5524 (2015). https://doi.org/10.1021/acs.nanolett.5b02082
  18. H. Wang, F. U. Kosasih, H. Yu, G. Zheng, J. Zhang, G. Pozina, Y. Liu, C. Bao, Z. Hu, X. Liu, L. Kobera, S. Abbrent, J. Brus, Y. Jin, M. Fahlman, R. H. Friend, C. Ducati, X.-K. Liu, and F. Gao, Perovskite-molecule composite thin films for efficient and stable light-emitting diodes, Nat. Commun., 11(891) 1-9 (2020) https://doi.org/10.1038/s41467-019-13993-7
  19. W. Liu, S. W. Lee, D. Lin, F. Shi, S. Wang, A. D. Sendek, and Y. Cui, Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires, Nat. Energy, 2, 17035 (2017). https://doi.org/10.1038/nenergy.2017.35
  20. J. B. Goodenough and Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater., 22, 587-603 (2010). https://doi.org/10.1021/cm901452z
  21. T. T. Dong, J. J. Zhang, G. J. Xu, J. C. Chai, H. P. Du, L. L. Wang, H. J. Wen, X. Zang, A. Du, Q. M. Jia, X. Zhou, and G. G. Cui, A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery, Energy Environ. Sci., 11, 1197-1203 (2018). https://doi.org/10.1039/c7ee03365f
  22. H. Xu, P.-H. Chien, J. Shi, Y. Lia, N. Wu, Y. Liu, Y.-Y. Hu, and J. B. G. enough, Highperformance all-solid-state batteries enabled by salt bonding to perovskite in poly(ethylene oxide), Proc. Natl. Acad. Sci., 116(38) 18815-18821 (2019). https://doi.org/10.1073/pnas.1907507116
  23. X. L. Wang and G. Q. Shi, Flexible graphene devices related to energy conversion and storage energy, Environ. Sci., 8, 790-823 (2015).
  24. N. Liu, H. Tian, G. Schwartz, J. B.-H. Tok, T.-L. Ren, and Z. Bao, Large-area, transparent, and flexible infrared photodetector fabricated using P-N junctions formed by N-doping chemical vapor deposition grown graphene, Nano Lett., 14, 3702-3708 (2014). https://doi.org/10.1021/nl500443j
  25. X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C.-L. Shieh, B. Nilsson, and A. J. Heeger, High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm, Science, 325, 1665-1667 (2009). https://doi.org/10.1126/science.1176706
  26. Y. Xie, M. Gong, T. A. Shartry, J. Lohman, M. C. Hersam, and S. Ren, Broad-spectral-response nanocarbon bulk-heterojunction excitonic photodetectors, Adv. Mater., 25, 3433-3437 (2013). https://doi.org/10.1002/adma.201300292
  27. S. Chen, C. Teng, M. Zhang, Y. Li, D. Xie, and G. Shi, A flexible UV-Vis-NIR photodetector based on a perovskite/conjugated-polymer composite, Adv. Mater., 28, 5969-5974 (2016). https://doi.org/10.1002/adma.201600468