DOI QR코드

DOI QR Code

iPSC-Derived Natural Killer Cells for Cancer Immunotherapy

  • Karagiannis, Peter (Center for iPS Cell Research and Application (CiRA), Kyoto University) ;
  • Kim, Shin-Il (Research and Development Center, THERABEST, Co., Ltd.)
  • Received : 2021.03.31
  • Accepted : 2021.06.21
  • Published : 2021.08.31

Abstract

The discovery of human pluripotent stem cells (PSCs) at the turn of the century opened the door to a new generation of regenerative medicine research. Among PSCs, the donors available for induced pluripotent stem cells (iPSCs) are greatest, providing a potentially universal cell source for all types of cell therapies including cancer immunotherapies using natural killer (NK cells). Unlike primary NK cells, those prepared from iPSCs can be prepared with a homogeneous quality and are easily modified to exert a desired response to tumor cells. There already exist several protocols to genetically modify and differentiate iPSCs into NK cells, and each has its own advantages with regards to immunotherapies. In this short review, we detail the benefits of using iPSCs in NK cell immunotherapies and discuss the challenges that must be overcome before this approach becomes mainstream in the clinic.

Keywords

Acknowledgement

The authors thank Misaki Ouchida (Center for iPS Cell Research and Application) and Bokyung Moon (THERABEST, Co., Ltd.) for one of the figure illustrations and the iPS cell microscopy image, respectively. This work was supported by the Core Center for iPS Cell Research (20bm0104001h0008), Research Center Network for Realization of Regenerative Medicine from AMED (Japan Agency for Medical Research and Development) and a 2020 Gibon Yeongu Program from the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2020R1F1A106727812 to S.I.K.).

References

  1. Bachanova, V. and Miller, J.S. (2014). NK cells in therapy of cancer. Crit. Rev. Oncog. 19, 133-141. https://doi.org/10.1615/CritRevOncog.2014011091
  2. Cichocki, F., Bjordahl, R., Gaidarova, S., Mahmood, S., Abujarour, R., Wang, H., Tuininga, K., Felices, M., Davis, Z.B., Bendzick, L., et al. (2020). iPSC-derived NK cells maintain high cytotoxicity and enhance in vivo tumor control in concert with T cells and anti-PD-1 therapy. Sci. Transl. Med. 12, eaaz5618. https://doi.org/10.1126/scitranslmed.aaz5618
  3. Delconte, R.B., Kolesnik, T.B., Dagley, L.F., Rautela, J., Shi, W., Putz, E.M., Stannard, K., Zhang, J.G., Teh, C., Firth, M., et al. (2016). CIS is a potent checkpoint in NK cell-mediated tumor immunity. Nat. Immunol. 17, 816-824. https://doi.org/10.1038/ni.3470
  4. Dianat-Moghadam, H., Rokni, M., Marofi, F., Panahi, Y., and Yousefi, M. (2018). Natural killer cell-based immunotherapy: from transplantation toward targeting cancer stem cells. J. Cell. Physiol. 234, 259-273. https://doi.org/10.1002/jcp.26878
  5. Felices, M., Lenvik, A.J., McElmurry, R., Chu, S., Hinderlie, P., Bendzick, L., Geller, M.A., Tolar, J., Blazar, B.R., and Miller, J.S. (2018). Continuous treatment with IL-15 exhausts human NK cells via a metabolic defect. JCI Insight 3, e96219. https://doi.org/10.1172/jci.insight.96219
  6. Ferrari de Andrade, L., Tay, R.E., Pan, D., Luoma, A.M., Ito, Y., Badrinath, S., Tsoucas, D., Franz, B., May, K.F., Jr., Harvey, C.J., et al. (2018). Antibodymediated inhibition of MICA and MICB shedding promotes NK cell-driven tumor immunity. Science 359, 1537-1542. https://doi.org/10.1126/science.aao0505
  7. Gornalusse, G.G., Hirata, R.K., Funk, S.E., Riolobos, L., Lopes, V.S., Manske, G., Prunkard, D., Colunga, A.G., Hanafi, L.A., Clegg, D.O., et al. (2017). HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells. Nat. Biotechnol. 35, 765-772. https://doi.org/10.1038/nbt.3860
  8. Imai, C., Iwamoto, S., and Campana, D. (2005). Genetic modification of primary natural killer cells overcomes inhibitory signals and induces specific killing of leukemic cells. Blood 106, 376-383.
  9. Karagiannis, P., Takahashi, K., Saito, M., Yoshida, Y., Okita, K., Watanabe, A., Inoue, H., Yamashita, J.K., Todani, M., Nakagawa, M., et al. (2019). Induced pluripotent stem cells and their use in human models of disease and development. Physiol. Rev. 99, 79-114. https://doi.org/10.1152/physrev.00039.2017
  10. Kiessling, R., Klein, E., Pross, H., and Wigzell, H. (1975a). "Natural" killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur. J. Immunol. 5, 117-121. https://doi.org/10.1002/eji.1830050209
  11. Kiessling, R., Klein, E., and Wigzell, H. (1975b). "Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol. 5, 112-117. https://doi.org/10.1002/eji.1830050208
  12. Knorr, D.A., Ni, Z., Hermanson, D., Hexum, M.K., Bendzick, L., Cooper, L.J., Lee, D.A., and Kaufman, D.S. (2013). Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Transl. Med. 2, 274-283. https://doi.org/10.5966/sctm.2012-0084
  13. Larbi, A., Gombert, J.M., Auvray, C., l'Homme, B., Magniez, A., Feraud, O., Coulombel, L., Chapel, A., Mitjavila-Garcia, M.T., Turhan, A.G., et al. (2012). The HOXB4 homeoprotein promotes the ex vivo enrichment of functional human embryonic stem cell-derived NK cells. PLoS One 7, e39514. https://doi.org/10.1371/journal.pone.0039514
  14. Lee, D.A. (2019). Cellular therapy: adoptive immunotherapy with expanded natural killer cells. Immunol. Rev. 290, 85-99. https://doi.org/10.1111/imr.12793
  15. Li, Y., Hermanson, D.L., Moriarity, B.S., and Kaufman, D.S. (2018). Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance anti-tumor activity. Cell Stem Cell 23, 181-192.e5. https://doi.org/10.1016/j.stem.2018.06.002
  16. Liu, E., Marin, D., Banerjee, P., Macapinlac, H.A., Thompson, P., Basar, R., Nassif Kerbauy, L., Overman, B., Thall, P., Kaplan, M., et al. (2020). Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N. Engl. J. Med. 382, 545-553. https://doi.org/10.1056/NEJMoa1910607
  17. Liu, E., Tong, Y., Dotti, G., Shaim, H., Savoldo, B., Mukherjee, M., Orange, J., Wan, X., Lu, X., Reynolds, A., et al. (2018). Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 32, 520-531. https://doi.org/10.1038/leu.2017.226
  18. Mandai, M., Watanabe, A., Kurimoto, Y., Hirami, Y., Morinaga, C., Daimon, T., Fujihara, M., Akimaru, H., Sakai, N., Shibata, Y., et al. (2017). Autologous induced stem-cell-derived retinal cells for macular degeneration. N. Engl. J. Med. 376, 1038-1046. https://doi.org/10.1056/NEJMoa1608368
  19. Mantesso, S., Geerts, D., Spanholtz, J., and Kucerova, L. (2020). Genetic engineering of natural killer cells for enhanced antitumor function. Front. Immunol. 11, 607131. https://doi.org/10.3389/fimmu.2020.607131
  20. Maude, S.L., Frey, N., Shaw, P.A., Aplenc, R., Barrett, D.M., Bunin, N.J., Chew, A., Gonzalez, V.E., Zheng, Z., Lacey, S.F., et al. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507-1517. https://doi.org/10.1056/NEJMoa1407222
  21. Mesquitta, W.T., Wandsnider, M., Kang, H., Thomson, J., Moskvin, O., Suknuntha, K., and Slukvin, I.I. (2019). UM171 expands distinct types of myeloid and NK progenitors from human pluripotent stem cells. Sci. Rep. 9, 6622. https://doi.org/10.1038/s41598-019-43054-4
  22. Mlecnik, B., Bindea, G., Angell, H.K., Sasso, M.S., Obenauf, A.C., Fredriksen, T., Lafontaine, L., Bilocq, A.M., Kirilovsky, A., Tosolini, M., et al. (2014). Functional network pipeline reveals genetic determinants associated with in situ lymphocyte proliferation and survival of cancer patients. Sci. Transl. Med. 6, 228ra237.
  23. Myers, J.A. and Miller, J.S. (2021). Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 18, 85-100. https://doi.org/10.1038/s41571-020-0426-7
  24. Naeimi Kararoudi, M., Nagai, Y., Elmas, E., de Souza Fernandes Pereira, M., Ali, S.A., Imus, P.H., Wethington, D., Borrello, I.M., Lee, D.A., and Ghiaur, G. (2020). CD38 deletion of human primary NK cells eliminates daratumumab-induced fratricide and boosts their effector activity. Blood 136, 2416-2427. https://doi.org/10.1182/blood.2020006200
  25. Oei, V.Y.S., Siernicka, M., Graczyk-Jarzynka, A., Hoel, H.J., Yang, W., Palacios, D., Almasbak, H., Bajor, M., Clement, D., Brandt, L., et al. (2018). Intrinsic functional potential of NK-cell subsets constrains retargeting driven by chimeric antigen receptors. Cancer Immunol. Res. 6, 467-480. https://doi.org/10.1158/2326-6066.CIR-17-0207
  26. Okita, K., Matsumura, Y., Sato, Y., Okada, A., Morizane, A., Okamoto, S., Hong, H., Nakagawa, M., Tanabe, K., Tezuka, K., et al. (2011). A more efficient method to generate integration-free human iPS cells. Nat. Methods 8, 409-412. https://doi.org/10.1038/nmeth.1591
  27. Perica, K., Varela, J.C., Oelke, M., and Schneck, J. (2015). Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med. J. 6, e0004. https://doi.org/10.5041/RMMJ.10179
  28. Romee, R., Cooley, S., Berrien-Elliott, M.M., Westervelt, P., Verneris, M.R., Wagner, J.E., Weisdorf, D.J., Blazar, B.R., Ustun, C., DeFor, T.E., et al. (2018). First-in-human phase 1 clinical study of the IL-15 superagonist complex ALT-803 to treat relapse after transplantation. Blood 131, 2515-2527. https://doi.org/10.1182/blood-2017-12-823757
  29. Romee, R., Foley, B., Lenvik, T., Wang, Y., Zhang, B., Ankarlo, D., Luo, X., Cooley, S., Verneris, M., Walcheck, B., et al. (2013). NK cell CD16 surface expression and function is regulated by a disintegrin and metalloprotease-17 (ADAM17). Blood 121, 3599-3608. https://doi.org/10.1182/blood-2012-04-425397
  30. Ruggeri, L., Capanni, M., Urbani, E., Perruccio, K., Shlomchik, W.D., Tosti, A., Posati, S., Rogaia, D., Frassoni, F., Aversa, F., et al. (2002). Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097-2100. https://doi.org/10.1126/science.1068440
  31. Sadelain, M., Brentjens, R., and Riviere, I. (2013). The basic principles of chimeric antigen receptor design. Cancer Discov. 3, 388-398. https://doi.org/10.1158/2159-8290.CD-12-0548
  32. Shankar, K., Capitini, C.M., and Saha, K. (2020). Genome engineering of induced pluripotent stem cells to manufacture natural killer cell therapies. Stem Cell Res. Ther. 11, 234. https://doi.org/10.1186/s13287-020-01741-4
  33. Shimasaki, N., Jain, A., and Campana, D. (2020). NK cells for cancer immunotherapy. Nat. Rev. Drug Discov. 19, 200-218. https://doi.org/10.1038/s41573-019-0052-1
  34. Srpan, K., Ambrose, A., Karampatzakis, A., Saeed, M., Cartwright, A.N.R., Guldevall, K., De Matos, G., Onfelt, B., and Davis, D.M. (2018). Shedding of CD16 disassembles the NK cell immune synapse and boosts serial engagement of target cells. J. Cell Biol. 217, 3267-3283. https://doi.org/10.1083/jcb.201712085
  35. Ueda, T. and Kaneko, S. (2020). Induced pluripotent stem cell-derived natural killer cells gene-modified to express chimeric antigen receptor-targeting solid tumors. Int. J. Hematol. 2020 Jul 23 [Epub]. https://doi.org/10.1007/s12185-020-02951-5
  36. Ueda, T., Kumagai, A., Iriguchi, S., Yasui, Y., Miyasaka, T., Nakagoshi, K., Nakane, K., Saito, K., Takahashi, M., Sasaki, A., et al. (2020). Non-clinical efficacy, safety and stable clinical cell processing of induced pluripotent stem cell-derived anti-glypican-3 chimeric antigen receptor-expressing natural killer/innate lymphoid cells. Cancer Sci. 111, 1478-1490. https://doi.org/10.1111/cas.14374
  37. Umekage, M., Sato, Y., and Takasu, N. (2019). Overview: an iPS cell stock at CiRA. Inflamm. Regen. 39, 17. https://doi.org/10.1186/s41232-019-0106-0
  38. Vivier, E., Raulet, D.H., Moretta, A., Caligiuri, M.A., Zitvogel, L., Lanier, L.L., Yokoyama, W.M., and Ugolini, S. (2011). Innate or adaptive immunity? The example of natural killer cells. Science 331, 44-49. https://doi.org/10.1126/science.1198687
  39. Wegiel, B., Vuerich, M., Daneshmandi, S., and Seth, P. (2018). Metabolic switch in the tumor microenvironment determines immune responses to anti-cancer therapy. Front. Oncol. 8, 284. https://doi.org/10.3389/fonc.2018.00284
  40. Woll, P.S., Grzywacz, B., Tian, X., Marcus, R.K., Knorr, D.A., Verneris, M.R., and Kaufman, D.S. (2009). Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood 113, 6094-6101. https://doi.org/10.1182/blood-2008-06-165225
  41. Woll, P.S., Martin, C.H., Miller, J.S., and Kaufman, D.S. (2005). Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. J. Immunol. 175, 5095-5103. https://doi.org/10.4049/jimmunol.175.8.5095
  42. Woltjen, K., Oceguera-Yanez, F., Kagawa, H., and Kim, S.I. (2016). At the conflux of human genome engineering and induced pluripotency. In Genome Editing, K. Turksen, ed. (Cham, Switzerland: Springer), pp. 45-64.
  43. Wrangle, J.M., Velcheti, V., Patel, M.R., Garrett-Mayer, E., Hill, E.G., Ravenel, J.G., Miller, J.S., Farhad, M., Anderton, K., Lindsey, K., et al. (2018). ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 19, 694-704. https://doi.org/10.1016/S1470-2045(18)30148-7
  44. Xie, G., Dong, H., Liang, Y., Ham, J.D., Rizwan, R., and Chen, J. (2020). CAR-NK cells: a promising cellular immunotherapy for cancer. EBioMedicine 59, 102975. https://doi.org/10.1016/j.ebiom.2020.102975
  45. Xu, H., Wang, B., Ono, M., Kagita, A., Fujii, K., Sasakawa, N., Ueda, T., Gee, P., Nishikawa, M., Nomura, M., et al. (2019a). Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell 24, 566-578.e7. https://doi.org/10.1016/j.stem.2019.02.005
  46. Xu, Y., Liu, Q., Zhong, M., Wang, Z., Chen, Z., Zhang, Y., Xing, H., Tian, Z., Tang, K., Liao, X., et al. (2019b). 2B4 costimulatory domain enhancing cytotoxic ability of anti-CD5 chimeric antigen receptor engineered natural killer cells against T cell malignancies. J. Hematol. Oncol. 12, 49. https://doi.org/10.1186/s13045-019-0732-7
  47. Yamanaka, S. (2020). Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell 27, 523-531. https://doi.org/10.1016/j.stem.2020.09.014
  48. Yang, Y. and Lundqvist, A. (2020). Immunomodulatory effects of IL-2 and IL-15; implications for cancer immunotherapy. Cancers (Basel) 12, 3586. https://doi.org/10.3390/cancers12123586
  49. Yvon, E.S., Burga, R., Powell, A., Cruz, C.R., Fernandes, R., Barese, C., Nguyen, T., Abdel-Baki, M.S., and Bollard, C.M. (2017). Cord blood natural killer cells expressing a dominant negative TGF-beta receptor: implications for adoptive immunotherapy for glioblastoma. Cytotherapy 19, 408-418. https://doi.org/10.1016/j.jcyt.2016.12.005
  50. Zeng, J., Tang, S.Y., Toh, L.L., and Wang, S. (2017). Generation of "off-the-shelf" natural killer cells from peripheral blood cell-derived induced pluripotent stem cells. Stem Cell Reports 9, 1796-1812. https://doi.org/10.1016/j.stemcr.2017.10.020
  51. Zhang, J., Zheng, H., and Diao, Y. (2019). Natural killer cells and current applications of chimeric antigen receptor-modified NK-92 cells in tumor immunotherapy. Int. J. Mol. Sci. 20, 317. https://doi.org/10.3390/ijms20020317
  52. Zhu, H., Blum, R.H., Bernareggi, D., Ask, E.H., Wu, Z., Hoel, H.J., Meng, Z., Wu, C., Guan, K.L., Malmberg, K.J., et al. (2020a). Metabolic reprograming via deletion of CISH in human iPSC-derived NK cells promotes in vivo persistence and enhances anti-tumor activity. Cell Stem Cell 27, 224-237.e6. https://doi.org/10.1016/j.stem.2020.05.008
  53. Zhu, H., Blum, R.H., Bjordahl, R., Gaidarova, S., Rogers, P., Lee, T.T., Abujarour, R., Bonello, G.B., Wu, J., Tsai, P.F., et al. (2020b). Pluripotent stem cell-derived NK cells with high-affinity noncleavable CD16a mediate improved antitumor activity. Blood 135, 399-410. https://doi.org/10.1182/blood.2019000621

Cited by

  1. Blocking HIF to Enhance NK Cells: Hints for New Anti-Tumor Therapeutic Strategies? vol.9, pp.10, 2021, https://doi.org/10.3390/vaccines9101144
  2. From Hematopoietic Stem Cell Transplantation to Chimeric Antigen Receptor Therapy: Advances, Limitations and Future Perspectives vol.10, pp.11, 2021, https://doi.org/10.3390/cells10112845
  3. Prognostic Biomarkers in Uveal Melanoma: The Status Quo, Recent Advances and Future Directions vol.14, pp.1, 2021, https://doi.org/10.3390/cancers14010096