DOI QR코드

DOI QR Code

Differential Roles of Tubby Family Proteins in Ciliary Formation and Trafficking

  • Hong, Julie J. (Department of Oral Biology, BK 21 FOUR Project, Yonsei University College of Dentistry) ;
  • Kim, Kyung Eun (Department of Oral Biology, BK 21 FOUR Project, Yonsei University College of Dentistry) ;
  • Park, So Young (Department of Oral Biology, BK 21 FOUR Project, Yonsei University College of Dentistry) ;
  • Bok, Jinwoong (Department of Anatomy, Yonsei University College of Medicine) ;
  • Seo, Jeong Taeg (Department of Oral Biology, BK 21 FOUR Project, Yonsei University College of Dentistry) ;
  • Moon, Seok Jun (Department of Oral Biology, BK 21 FOUR Project, Yonsei University College of Dentistry)
  • Received : 2021.04.07
  • Accepted : 2021.06.02
  • Published : 2021.08.31

Abstract

Cilia are highly specialized organelles that extend from the cell membrane and function as cellular signaling hubs. Thus, cilia formation and the trafficking of signaling molecules into cilia are essential cellular processes. TULP3 and Tubby (TUB) are members of the tubby-like protein (TULP) family that regulate the ciliary trafficking of G-protein coupled receptors, but the functions of the remaining TULPs (i.e., TULP1 and TULP2) remain unclear. Herein, we explore whether these four structurally similar TULPs share a molecular function in ciliary protein trafficking. We found that TULP3 and TUB, but not TULP1 or TULP2, can rescue the defective cilia formation observed in TULP3-knockout (KO) hTERT RPE-1 cells. TULP3 and TUB also fully rescue the defective ciliary localization of ARL13B, INPP5E, and GPR161 in TULP3 KO RPE-1 cells, while TULP1 and TULP2 only mediate partial rescues. Furthermore, loss of TULP3 results in abnormal IFT140 localization, which can be fully rescued by TUB and partially rescued by TULP1 and TULP2. TUB's capacity for binding IFT-A is essential for its role in cilia formation and ciliary protein trafficking in RPE-1 cells, whereas its capacity for PIP2 binding is required for proper cilia length and IFT140 localization. Finally, chimeric TULP1 containing the IFT-A binding domain of TULP3 fully rescues ciliary protein trafficking, but not cilia formation. Together, these two TULP domains play distinct roles in ciliary protein trafficking but are insufficient for cilia formation in RPE-1 cells. In addition, TULP1 and TULP2 play other unknown molecular roles that should be addressed in the future.

Keywords

Acknowledgement

This work was supported by National Research Foundation of Korea (NRF) Grants funded by the Korean Government (NRF-2016R1A5A2008630 and NRF-2018R1A2B3001668).

References

  1. Ansley, S.J., Badano, J.L., Blacque, O.E., Hill, J., Hoskins, B.E., Leitch, C.C., Kim, J.C., Ross, A.J., Eichers, E.R., Teslovich, T.M., et al. (2003). Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 425, 628-633. https://doi.org/10.1038/nature02030
  2. Badgandi, H.B., Hwang, S.H., Shimada, I.S., Loriot, E., and Mukhopadhyay, S. (2017). Tubby family proteins are adapters for ciliary trafficking of integral membrane proteins. J. Cell Biol. 216, 743-760. https://doi.org/10.1083/jcb.201607095
  3. Christensen, S.T., Pedersen, L.B., Schneider, L., and Satir, P. (2007). Sensory cilia and integration of signal transduction in human health and disease. Traffic 8, 97-109. https://doi.org/10.1111/j.1600-0854.2006.00516.x
  4. Colbert, H.A., Smith, T.L., and Bargmann, C.I. (1997). OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J. Neurosci. 17, 8259-8269. https://doi.org/10.1523/JNEUROSCI.17-21-08259.1997
  5. Cole, D.G., Diener, D.R., Himelblau, A.L., Beech, P.L., Fuster, J.C., and Rosenbaum, J.L. (1998). Chlamydomonas kinesin-II-dependent intraflagellar transport (IFT): IFT particles contain proteins required for ciliary assembly in Caenorhabditis elegans sensory neurons. J. Cell Biol. 141, 993-1008. https://doi.org/10.1083/jcb.141.4.993
  6. Corbit, K.C., Aanstad, P., Singla, V., Norman, A.R., Stainier, D.Y., and Reiter, J.F. (2005). Vertebrate Smoothened functions at the primary cilium. Nature 437, 1018-1021. https://doi.org/10.1038/nature04117
  7. Crouse, J.A., Lopes, V.S., SanAgustin, J.T., Keady, B.T., Williams, D.S., and Pazour, G.J. (2014). Distinct functions for IFT140 and IFT20 in opsin transport. Cytoskeleton (Hoboken) 71, 302-310. https://doi.org/10.1002/cm.21173
  8. DiTirro, D., Philbrook, A., Rubino, K., and Sengupta, P. (2019). The Caenorhabditis elegans Tubby homolog dynamically modulates olfactory cilia membrane morphogenesis and phospholipid composition. Elife 8, e48789. https://doi.org/10.7554/eLife.48789
  9. Drummond, I.A. (2012). Cilia functions in development. Curr. Opin. Cell Biol. 24, 24-30. https://doi.org/10.1016/j.ceb.2011.12.007
  10. Ezratty, E.J., Stokes, N., Chai, S., Shah, A.S., Williams, S.E., and Fuchs, E. (2011). A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell 145, 1129-1141. https://doi.org/10.1016/j.cell.2011.05.030
  11. Fliegauf, M., Benzing, T., and Omran, H. (2007). When cilia go bad: cilia defects and ciliopathies. Nat. Rev. Mol. Cell Biol. 8, 880-893. https://doi.org/10.1038/nrm2278
  12. Garcia-Gonzalo, F.R., Phua, S.C., Roberson, E.C., Garcia, G., 3rd, Abedin, M., Schurmans, S., Inoue, T., and Reiter, J.F. (2015). Phosphoinositides regulate ciliary protein trafficking to modulate hedgehog signaling. Dev. Cell 34, 400-409. https://doi.org/10.1016/j.devcel.2015.08.001
  13. Green, J.S., Parfrey, P.S., Harnett, J.D., Farid, N.R., Cramer, B.C., Johnson, G., Heath, O., McManamon, P.J., O'Leary, E., and Pryse-Phillips, W. (1989). The cardinal manifestations of Bardet-Biedl syndrome, a form of Laurence-Moon-Biedl syndrome. N. Engl. J. Med. 321, 1002-1009. https://doi.org/10.1056/NEJM198910123211503
  14. Hagstrom, S.A., Duyao, M., North, M.A., and Li, T. (1999). Retinal degeneration in tulp1-/- mice: vesicular accumulation in the interphotoreceptor matrix. Invest. Ophthalmol. Vis. Sci. 40, 2795-2802.
  15. Han, S., Miyoshi, K., Shikada, S., Amano, G., Wang, Y., Yoshimura, T., and Katayama, T. (2019). TULP3 is required for localization of membrane-associated proteins ARL13B and INPP5E to primary cilia. Biochem. Biophys. Res. Commun. 509, 227-234. https://doi.org/10.1016/j.bbrc.2018.12.109
  16. He, W., Ikeda, S., Bronson, R.T., Yan, G., Nishina, P.M., North, M.A., and Naggert, J.K. (2000). GFP-tagged expression and immunohistochemical studies to determine the subcellular localization of the tubby gene family members. Brain Res. Mol. Brain Res. 81, 109-117. https://doi.org/10.1016/S0169-328X(00)00164-9
  17. Hildebrandt, F., Benzing, T., and Katsanis, N. (2011). Ciliopathies. N. Engl. J. Med. 364, 1533-1543. https://doi.org/10.1056/NEJMra1010172
  18. Hilgendorf, K.I., Johnson, C.T., and Jackson, P.K. (2016). The primary cilium as a cellular receiver: organizing ciliary GPCR signaling. Curr. Opin. Cell Biol. 39, 84-92. https://doi.org/10.1016/j.ceb.2016.02.008
  19. Huangfu, D., Liu, A., Rakeman, A.S., Murcia, N.S., Niswander, L., and Anderson, K.V. (2003). Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426, 83-87. https://doi.org/10.1038/nature02061
  20. Ikeda, S., Shiva, N., Ikeda, A., Smith, R.S., Nusinowitz, S., Yan, G., Lin, T.R., Chu, S., Heckenlively, J.R., North, M.A., et al. (2000). Retinal degeneration but not obesity is observed in null mutants of the tubby-like protein 1 gene. Hum. Mol. Genet. 9, 155-163. https://doi.org/10.1093/hmg/9.2.155
  21. Ishikawa, H. and Marshall, W.F. (2011). Ciliogenesis: building the cell's antenna. Nat. Rev. Mol. Cell Biol. 12, 222-234. https://doi.org/10.1038/nrm3085
  22. Keady, B.T., Le, Y.Z., and Pazour, G.J. (2011). IFT20 is required for opsin trafficking and photoreceptor outer segment development. Mol. Biol. Cell 22, 921-930. https://doi.org/10.1091/mbc.e10-09-0792
  23. Kleyn, P.W., Fan, W., Kovats, S.G., Lee, J.J., Pulido, J.C., Wu, Y., Berkemeier, L.R., Misumi, D.J., Holmgren, L., Charlat, O., et al. (1996). Identification and characterization of the mouse obesity gene tubby: a member of a novel gene family. Cell 85, 281-290. https://doi.org/10.1016/S0092-8674(00)81104-6
  24. Liu, Q., Zhou, J., Daiger, S.P., Farber, D.B., Heckenlively, J.R., Smith, J.E., Sullivan, L.S., Zuo, J., Milam, A.H., and Pierce, E.A. (2002). Identification and subcellular localization of the RP1 protein in human and mouse photoreceptors. Invest. Ophthalmol. Vis. Sci. 43, 22-32.
  25. Loktev, A.V. and Jackson, P.K. (2013). Neuropeptide Y family receptors traffic via the Bardet-Biedl syndrome pathway to signal in neuronal primary cilia. Cell Rep. 5, 1316-1329. https://doi.org/10.1016/j.celrep.2013.11.011
  26. Mukhopadhyay, S. and Jackson, P.K. (2011). The tubby family proteins. Genome Biol. 12, 225. https://doi.org/10.1186/gb-2011-12-6-225
  27. Mukhopadhyay, S., Wen, X., Chih, B., Nelson, C.D., Lane, W.S., Scales, S.J., and Jackson, P.K. (2010). TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia. Genes Dev. 24, 2180-2193. https://doi.org/10.1101/gad.1966210
  28. Mukhopadhyay, S., Wen, X., Ratti, N., Loktev, A., Rangell, L., Scales, S.J., and Jackson, P.K. (2013). The ciliary G-protein-coupled receptor Gpr161 negatively regulates the Sonic hedgehog pathway via cAMP signaling. Cell 152, 210-223. https://doi.org/10.1016/j.cell.2012.12.026
  29. Nachury, M.V., Seeley, E.S., and Jin, H. (2010). Trafficking to the ciliary membrane: how to get across the periciliary diffusion barrier? Annu. Rev. Cell Dev. Biol. 26, 59-87. https://doi.org/10.1146/annurev.cellbio.042308.113337
  30. Noben-Trauth, K., Naggert, J.K., North, M.A., and Nishina, P.M. (1996). A candidate gene for the mouse mutation tubby. Nature 380, 534-538. https://doi.org/10.1038/380534a0
  31. Norman, R.X., Ko, H.W., Huang, V., Eun, C.M., Abler, L.L., Zhang, Z., Sun, X., and Eggenschwiler, J.T. (2009). Tubby-like protein 3 (TULP3) regulates patterning in the mouse embryo through inhibition of Hedgehog signaling. Hum. Mol. Genet. 18, 1740-1754. https://doi.org/10.1093/hmg/ddp113
  32. Oishi, I., Kawakami, Y., Raya, A., Callol-Massot, C., and Izpisua Belmonte, J.C. (2006). Regulation of primary cilia formation and left-right patterning in zebrafish by a noncanonical Wnt signaling mediator, duboraya. Nat. Genet. 38, 1316-1322. https://doi.org/10.1038/ng1892
  33. Park, J., Lee, J., Shim, J., Han, W., Lee, J., Bae, Y.C., Chung, Y.D., Kim, C.H., and Moon, S.J. (2013). dTULP, the Drosophila melanogaster homolog of tubby, regulates transient receptor potential channel localization in cilia. PLoS Genet. 9, e1003814. https://doi.org/10.1371/journal.pgen.1003814
  34. Pazour, G.J., Dickert, B.L., Vucica, Y., Seeley, E.S., Rosenbaum, J.L., Witman, G.B., and Cole, D.G. (2000). Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene Tg737, are required for assembly of cilia and flagella. J. Cell Biol. 151, 709-718. https://doi.org/10.1083/jcb.151.3.709
  35. Qin, J., Lin, Y., Norman, R.X., Ko, H.W., and Eggenschwiler, J.T. (2011). Intraflagellar transport protein 122 antagonizes Sonic Hedgehog signaling and controls ciliary localization of pathway components. Proc. Natl. Acad. Sci. U. S. A. 108, 1456-1461. https://doi.org/10.1073/pnas.1011410108
  36. Ran, F.A., Hsu, P.D., Wright, J., Agarwala, V., Scott, D.A., and Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308. https://doi.org/10.1038/nprot.2013.143
  37. Rohatgi, R., Milenkovic, L., and Scott, M.P. (2007). Patched1 regulates hedgehog signaling at the primary cilium. Science 317, 372-376. https://doi.org/10.1126/science.1139740
  38. Rosenbaum, J.L. and Witman, G.B. (2002). Intraflagellar transport. Nat. Rev. Mol. Cell Biol. 3, 813-825. https://doi.org/10.1038/nrm952
  39. Scholey, J.M. (2003). Intraflagellar transport. Annu. Rev. Cell Dev. Biol. 19, 423-443. https://doi.org/10.1146/annurev.cellbio.19.111401.091318
  40. Sentmanat, M.F., Peters, S.T., Florian, C.P., Connelly, J.P., and Pruett-Miller, S.M. (2018). A survey of validation strategies for CRISPR-Cas9 editing. Sci. Rep. 8, 1-8.
  41. Sun, X., Haley, J., Bulgakov, O.V., Cai, X., McGinnis, J., and Li, T. (2012). Tubby is required for trafficking G protein-coupled receptors to neuronal cilia. Cilia 1, 21. https://doi.org/10.1186/2046-2530-1-21
  42. Taschner, M., Bhogaraju, S., and Lorentzen, E. (2012). Architecture and function of IFT complex proteins in ciliogenesis. Differentiation 83, S12-S22.
  43. Valente, E.M., Silhavy, J.L., Brancati, F., Barrano, G., Krishnaswami, S.R., Castori, M., Lancaster, M.A., Boltshauser, E., Boccone, L., Al-Gazali, L., et al. (2006). Mutations in CEP290, which encodes a centrosomal protein, cause pleiotropic forms of Joubert syndrome. Nat. Genet. 38, 623-625. https://doi.org/10.1038/ng1805