DOI QR코드

DOI QR Code

The Impact of Antibiotic Burden on the Selective Resistance of Gram Negative Bacteria in Children

소아청소년에서의 항생제 사용량 변화에 따른 그람음성 균주의 항생제 내성률 변화 양상

  • Park, Sera (Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Lee, Euntaek (Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine) ;
  • So, Hye Jin (Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Yoo, Ree Nar (Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Lee, Jina (Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine)
  • 박세라 (울산의대 서울아산병원 소아청소년과) ;
  • 이은택 (울산의대 서울아산병원 소아청소년과) ;
  • 소혜진 (울산의대 서울아산병원 소아청소년과) ;
  • 유리나 (울산의대 서울아산병원 소아청소년과) ;
  • 이진아 (울산의대 서울아산병원 소아청소년과)
  • Received : 2020.10.15
  • Accepted : 2021.08.15
  • Published : 2021.08.25

Abstract

Background: The purpose of this study was to investigate the association between antibiotic use and the antimicrobial resistance of gram-negative bacteria isolated from blood cultures in a pediatric population. Methods: From January 2014 to June 2018, the antibiotic resistance pattern of Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa obtained from bacteremic patients aged ≤18 years hospitalized at Asan Medical Center Children's Hospital was analyzed and the parenteral antibiotic consumption data were retrieved. Results: During the study period, the blood culture was positive for K. pneumoniae (6.4%; 105/1,628), E. coli (5.6%; 91/1,628), P. aeruginosa (3.3%; 54/1,628), and A. baumannii (2.5%; 41/1,628), and the extended-spectrum antibiotic resistance rate of gram-negative bacteria was consistently high. The overall resistance rate of E. coli and K. pneumoniae to extendedspectrum cephalosporin was 49.3% and 54.4%, respectively. Carbapenem-resistant E. coli was first detected in 2014; its overall resistance rate to carbapenem was 5.3%. There was a linear correlation between the usage of 3rd generation cephalosporin and the resistance of A. baumannii (r2=0.96, P=0.004) and carbapenem usage and the resistance of K. pneumoniae (r2=0.79, P=0.045). Conclusions: A positive linear correlation was observed between antibiotic resistance and the corresponding antibiotic usage in 3rd generation cephalosporin resistant A. baumannii and carbapenem resistant K. pneumoniae. The judicious use of antibiotics in healthcare settings is important to minimize selection for extended-spectrum β-lactamase (ESBL) and carbapenem resistance in gram-negative bacteria.

목적: 본 연구에서는 소아환자의 혈액에서 분리된 주요 그람음성 균주의 항생제 내성 양상을 파악하고 항생제 사용량과의 관계를 알아보고자 하였다. 방법: 2014년 1월부터 2018년 6월까지 서울아산병원 어린이병원에 입원한 18세 이하의 소아청소년에서 발생한 그람음성 균주 균혈증 중 Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, 총 4가지 균주를 대상으로 항생제 내성 양상을 분석하였다. 또 원내에서 소아에게 주로 사용하는 정주용 항생제의 사용량과 항생제 내성률의 변화와의 관련성을 분석하였다. 결과: 본 연구 기간 동안 전체 혈액배양에서, K. pneumoniae (6.4%; 105/1,628), E. coli (5.6%; 91/1,628), P. aeruginosa (3.3%; 54/1,628) 및 A. baumannii (2.5%; 41/1,628)의 순으로 분리되었다. 2014-2018년에 분리된 E. coli와 K. pneumoniae의 광범위 cephalosporin 계열에 대한 내성률은 각각 49.3%와 54.4%였다. 2014년도에는 carbapenem에 내성을 보이는 E. coli 균종이 처음 출현하였고, 5년간의 내성률은 5.3%였다. 연구기간 동안 항생제 사용량과 항생제 내성률 사이의 상관관계를 분석하여, 3세대 cephalosporin 사용량과 A. baumannii의 내성률(r2=0.96, P=0.004) 그리고 carbapenem의 사용량과 K. pneumoniae의 내성률(r2=0.79, P=0.045) 간에 양의 상관관계를 확인하였다. 결론: 국내 소아에서 발생한 그람음성균 균혈증 분석 시 3세대 및 4세대 cephalosporin에 대한 높은 내성률이 확인되며, carbapenem에 대한 내성도 확인되고 있다. 일부 항생제 사용량과 해당 약제에 대한 내성률에 선형 상관관계가 있었으며, 이는 항생제 사용량이 내성률에 영향을 미칠 수 있음을 시사한다. 이에 지속적인 원내 항생제 사용량 및 내성률에 대한 감시가 필요하며, 적절한 항생제의 선택 및 관리는 내성균주 출현 예방 및 치료 성적 향상에 필수적이다.

Keywords

References

  1. Ben-Ami R, Rodriguez-Bano J, Arslan H, Pitout JD, Quentin C, Calbo ES, et al. A multinational survey of risk factors for infection with extended-spectrum β-lactamase-producing enterobacteriaceae in nonhospitalized patients. Clin Infect Dis 2009;49:682-90. https://doi.org/10.1086/604713
  2. Kim KG, Jeong J, Kim MJ, Park DW, Shin JH, Park HJ, et al. Prevalence and molecular epidemiology of ESBLs, plasmid-determined AmpC-type β-lactamases and carbapenemases among diarrhoeagenic Escherichia coli isolates from children in Gwangju, Korea: 2007-16. J Antimicrob Chemother 2019;74:2181-7. https://doi.org/10.1093/jac/dkz175
  3. Morrissey I, Hackel M, Badal R, Bouchillon S, Hawser S, Biedenbach D. A review of ten years of the Study for Monitoring Antimicrobial Resistance Trends (SMART) from 2002 to 2011. Pharmaceuticals (Basel) 2013;6:1335-46. https://doi.org/10.3390/ph6111335
  4. Kim S, Yoo R, Lee J. The impact of the antibiotic burden on the selection of its resistance among gram negative bacteria isolated from children. Pediatr Infect Vaccine 2015;22:178-85. https://doi.org/10.14776/piv.2015.22.3.178
  5. Yoon EJ, Yang JW, Kim JO, Lee H, Lee KJ, Jeong SH. Carbapenemase-producing Enterobacteriaceae in South Korea: a report from the National Laboratory Surveillance System. Future Microbiol 2018;13:771-83. https://doi.org/10.2217/fmb-2018-0022
  6. Naas T, Nordmann P, Vedel G, Poyart C. Plasmid-mediated carbapenem-hydrolyzing β-lactamase KPC in a Klebsiella pneumoniae isolate from France. Antimicrob Agents Chemother 2005;49:4423-4. https://doi.org/10.1128/AAC.49.10.4423-4424.2005
  7. Hoenigl M, Valentin T, Zarfel G, Wuerstl B, Leitner E, Salzer HJ, et al. Nosocomial outbreak of Klebsiella pneumoniae carbapenemase-producing Klebsiella oxytoca in Austria. Antimicrob Agents Chemother 2012;56:2158-61. https://doi.org/10.1128/AAC.05440-11
  8. Armenian SH, Singh J, Arrieta AC. Risk factors for mortality resulting from bloodstream infections in a pediatric intensive care unit. Pediatr Infect Dis J 2005;24:309-14. https://doi.org/10.1097/01.inf.0000157086.97503.bd
  9. Cordero L, Rau R, Taylor D, Ayers LW. Enteric gram-negative bacilli bloodstream infections: 17 years' experience in a neonatal intensive care unit. Am J Infect Control 2004;32:189-95. https://doi.org/10.1016/j.ajic.2003.07.004
  10. Smith TL, Pullen GT, Crouse V, Rosenberg J, Jarvis WR. Bloodstream infections in pediatric oncology outpatients: a new healthcare systems challenge. Infect Control Hosp Epidemiol 2002;23:239-43. https://doi.org/10.1086/502042
  11. Hartman ME, Linde-Zwirble WT, Angus DC, Watson RS. Trends in the epidemiology of pediatric severe sepsis. Pediatr Crit Care Med 2013;14:686-93. https://doi.org/10.1097/PCC.0b013e3182917fad
  12. Kang JE, Seok JY, Yun KW, Kang HJ, Choi EH, Park KD, et al. Etiological agents in bacteremia of children with hemato-oncologic diseases (2006-2010): a single center study. Korean J Pediatr Infect Dis 2012;19:131-40. https://doi.org/10.14776/kjpid.2012.19.3.131
  13. Folgori L, Livadiotti S, Carletti M, Bielicki J, Pontrelli G, Ciofi Degli Atti ML, et al. Epidemiology and clinical outcomes of multidrug-resistant, gram-negative bloodstream infections in a European tertiary pediatric hospital during a 12-month period. Pediatr Infect Dis J 2014;33:929-32. https://doi.org/10.1097/INF.0000000000000339
  14. Ben-David D, Kordevani R, Keller N, Tal I, Marzel A, Gal-Mor O, et al. Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin Microbiol Infect 2012;18:54-60.
  15. Schwaber MJ, Navon-Venezia S, Kaye KS, Ben-Ami R, Schwartz D, Carmeli Y. Clinical and economic impact of bacteremia with extended-spectrum-β-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 2006;50:1257-62. https://doi.org/10.1128/AAC.50.4.1257-1262.2006
  16. Kim YK, Pai H, Lee HJ, Park SE, Choi EH, Kim J, et al. Bloodstream infections by extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in children: epidemiology and clinical outcome. Antimicrob Agents Chemother 2002;46:1481-91. https://doi.org/10.1128/AAC.46.5.1481-1491.2002
  17. Duncan RA. Controlling use of antimicrobial agents. Infect Control Hosp Epidemiol 1997;18:260-6. https://doi.org/10.2307/30141213
  18. Lee J, Pai H, Kim YK, Kim NH, Eun BW, Kang HJ, et al. Control of extended-spectrum β-lactamaseproducing Escherichia coli and Klebsiella pneumoniae in a children's hospital by changing antimicrobial agent usage policy. J Antimicrob Chemother 2007;60:629-37. https://doi.org/10.1093/jac/dkm225
  19. Lee J, Oh CE, Choi EH, Lee HJ. The impact of the increased use of piperacillin/tazobactam on the selection of antibiotic resistance among invasive Escherichia coli and Klebsiella pneumoniae isolates. Int J Infect Dis 2013;17:e638-43. https://doi.org/10.1016/j.ijid.2013.01.030
  20. Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement. CLSI document M100-S24. Wayne: CLSI; 2014.
  21. Goossens H, Ferech M, Vander Stichele R, Elseviers M; ESAC Project Group. Outpatient antibiotic use in Europe and association with resistance: a cross-national database study. Lancet 2005;365:579-87. https://doi.org/10.1016/S0140-6736(05)17907-0
  22. Willemsen I, Bogaers-Hofman D, Winters M, Kluytmans J. Correlation between antibiotic use and resistance in a hospital: temporary and ward-specific observations. Infection 2009;37:432-7. https://doi.org/10.1007/s15010-009-8325-y
  23. Petrikkos G, Markogiannakis A, Papaparaskevas J, Daikos GL, Stefanakos G, Zissis NP, et al. Differences in the changes in resistance patterns to third- and fourth-generation cephalosporins and piperacillin/ tazobactam among Klebsiella pneumoniae and Escherichia coli clinical isolates following a restriction policy in a Greek tertiary care hospital. Int J Antimicrob Agents 2007;29:34-8. https://doi.org/10.1016/j.ijantimicag.2006.08.042
  24. de Araujo OR, da Silva DC, Diegues AR, Arkader R, Cabral EA, Afonso MR, et al. Cefepime restriction improves gram-negative overall resistance patterns in neonatal intensive care unit. Braz J Infect Dis 2007;11:277-80. https://doi.org/10.1590/S1413-86702007000200022