과제정보
This work was partly supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2020-0-02091,Development and Commercialization of IoT-based refrigerated container real-time monitoring and BigData / AI-based failure predictive service platform to strengthen competitiveness of shipping & logistics company) and Korea Evaluation Institute of Industrial Technology(KEIT) grant funded by the Korea government(MOTIE) (No.2020-0-02091,Development and Commercialization of IoT-based refrigerated container real-time monitoring and BigData / AI-based failure predictive service platform to strengthen competitiveness of shipping & logistics company).
참고문헌
- B. Jin, D. Li, S. Srinivasan & S. K. Ng. (2019). Detecting and Diagnosing Incipient Building Faults Using Uncertainty Information from Deep Neural Networks. 2019 IEEE International Conference on Prognostics and Health Management (ICPHM), 2019. DOI : 10.1109/ICPHM.2019.8819438
- Y. Xia, Q. Ding, Z. Li & A. Jiang. (2021). Fault detection for centrifugal chillers using a Kernel Entropy Component Analysis (KECA) method. Journal of Building Simulation, 14(1), 53-61 DOI : 10.1007/s12273-019-0598-1
- Q. Jiehui, Z. Hanyuan, Z. Guiqing & H. Hao. (2021). Incipient fault detection of chiller based on improved CVA, 5th International Workshop on Advances in Energy Science and Environment Engineering (AESEE 2021), 257(1), 1-5. DOI : 10.1051/e3sconf/202125701062
- G. N. Li, Y. P. Hu, Q. J. Mao, C. H. Zhou & L. Z. Jiao. (2019). A deep neural network based fault diagnosis method for centrifugal chillers. 2019 IOP Conference Series: Earth and Environmental Science, (pp. 1-6), Poland DOI : 10.1088/1755-1315/238/1/012047
- Y. S. Moon, S. J. Park, J. W. Jung, H. R. Cho & J. J. Kim. (2017). Temperature Control Algorithm for Reefer Container. Journal of the Korea Institute of Information and Communication Engineering, 21(12), 2080-2386. DOI : 10.6109/jkiice.2017.21.12.2380
- Z. Wang, Y. Dong, W. Liu & Z. Ma. (2020). A Novel Fault Diagnosis Approach for Chillers Based on 1-D Convolutional Neural Network and Gated Recurrent Unit. Journal of Sensors, 20(9), 1-20. DOI : 10.3390/s20092458
- K. Lee, S. Park, S, Sung & D. Park. (2019). A Study on the Prediction of CNC Tool Wear Using Machine Learning Technique. Journal of the Korea Convergence Society, 10(10), 15-21. DOI : 10.15207/JKCS.2019.10.11.015
- A. Beghi, L. Cecchinato, C. Corazzol, M. Rampazzo, F. Simmini & G. A. Susto. (2014). A One-Class SVM Based Tool for Machine Learning Novelty Detection in HVAC Chiller Systems. IFAC Proceedings Volumes, 47(3), 1953-1958. DOI : 10.3182/20140824-6-ZA-1003.02382
- G. Li, Y. Huab, H. Chen, L. Shen, H. Li, M. Hu, J. Liu & Kaizheng Sun. (2016). An improved fault detection method for incipient centrifugal chiller faults using the PCA-R-SVDD algorithm. Journal of Energy and Buildings, 116(15), 104-113. DOI : 10.1016/j.enbuild.2015.12.045
- Y. Wang, Z. Wang, S. He & Z. Wang. (2019). A practical chiller fault diagnosis method based on discrete Bayesian networkUne methode pratique de diagnostic des anomalies du refroidisseur basee sur un reseau bayesien discret. Journal of International Journal of Refrigeration, 102, 159-167. DOI : 10.1016/j.ijrefrig.2019.03.008
- H. Han, X. Cui, Y. Fan & H. Qing. (2019). Least squares support vector machine (LS-SVM)-based chiller fault diagnosis using fault indicative features. Journal of Applied Thermal Engineering, 154, 540-547 DOI : 10.1016/j.applthermaleng.2019.03.111
- P. K. Kankar, S. C. Sharma & S. P. Harsha. (2019). Fault diagnosis of ball bearings using machine learning methods. Joural of Expert Systems with Applications, 38, 1876-1886. DOI : 10.1016/j.eswa.2010.07.119
- Z. Wang, Y. Dong, W. Liu & Z. Ma. (2020). A Novel Fault Diagnosis Approach for Chillers Based on 1-D Convolutional Neural Network and Gated Recurrent Unit. Joural of Sensors, 20(9), 1-20. DOI : 10.3390/s20092458
- X. Liu, Y. Li, X. Liu & J. Shen. (2018). Fault diagnosis of chillers using very deep convolutional network. Chinese Automation Congress, (pp 1274- 1279), China. DOI : 10.1109/CAC.2018.8623749
- J. Liu, D. Shi, G. Li, Y. Xie, K. Li, B. Liu & Z. Ru. (2020). Data-driven and association rule mining-vased fault diagnosis and action mechanism analysis for building chillers. Joural of Energy and Buildings, 216, 1-16. DOI : 10.1016/j.enbuild.2020.109957