
International Journal of Internet, Broadcasting and Communication Vol.13 No.3 178-192 (2021)

http://dx.doi.org/10.7236/IJIBC.2021.13.3.178

Development of a Forensic Analyzing Tool based on Cluster Information of

HFS+ filesystem

Gyu-Sang Cho*

*Professor, Dept. of Computer Software, Dongyang University, Korea

cho@dyu.ac.kr

Abstract

File system forensics typically focus on the contents or timestamps of a file, and it is common to work around

file/directory centers. But to recover a deleted file on the disk or use a carving technique to find and connect

partial missing content, the evidence must be analyzed using cluster-centered analysis. Forensics tools such

as EnCase, TSK, and X-ways, provide a basic ability to get information about disk clusters, but these are not

the core functions of the tools. Alternatively, Sysinternals' DiskView tool provides a more intuitive visualization

function, which makes it easier to obtain information around disk clusters. In addition, most current tools are

for Windows. There are very few forensic analysis tools for MacOS, and furthermore, cluster analysis tools

are very rare.

 In this paper, we developed a tool named FACT (Forensic Analyzer based Cluster Information Tool) for

analyzing the state of clusters in a HFS+ file system, for digital forensics. The FACT consists of three features,

a Cluster based analysis, B-tree based analysis, and Directory based analysis. The Cluster based analysis is

the main feature, and was basically developed for cluster analysis. The FACT tool’s cluster visualization

feature plays a central role. The FACT tool was programmed in two programming languages, C/C++ and

Python. The core part for analyzing the HFS+ filesystem was programmed in C/C++ and the visualization

part is implemented using the Python Tkinter library. The features in this study will evolve into key forensics

tools for use in MacOS, and by providing additional GUI capabilities can be very important for cluster-centric

forensics analysis.

Keywords: HFS+ filesystem, Cluster Analysis, Forensic Tool, Digital Forensics, B-tree structure.

1. Introduction

A cluster is the smallest logical amount of disk space that can be allocated to hold a file or a directory. To

reduce the overhead of managing on-disk data structures, the filesystem allocates data in contiguous groups

of sectors, called clusters. Usually, a cluster has 8 contiguous sectors, i.e. 4K(4,096 bytes) [1].

If you directly access the raw disk without using the operating system to obtain the information contained

in the cluster, all of the information for the forensic investigation will be interpreted based on the cluster

information. Many forensic tools provide a function to display disk cluster information, but do not provide a

satisfactory function to utilize it. Alternatively, DiskView provides a much more intuitive and visual

management function. This tool is generally used as a system management tool, but is also very useful as a

IJIBC 21-3-23

Manuscript Received: August. 2, 2021 / Revised: August. 5, 2021 / Accepted: August. 9, 2021

Corresponding Author: cho@dyu.ac.kr

Tel: +82-54-630-1119, Fax: +82-54-630-1179

Professor, Department of Computer Software, Dongyang University, Korea

mailto:cho@dyu.ac.kr

International Journal of Internet, Broadcasting and Communication Vol.13 No.3 178-192 (2021) 179

forensic analysis tool because it allows you to visually understand information about files/directories on the

disk by displaying the fragmentation status of the hard disk or the location of the specified file [2].
Sysinternals’ DiskView displays a graphical map of your disk, allowing you to determine where a file is

located or, by clicking on a cluster, seeing which file occupies it. Double-clicking gets more information about

a file to which a cluster is allocated [2]. However, DiskView is designed for disk management, not digital

forensics, so it has practical limitations when it comes to obtaining complexly connected digital forensic-

related information. In addition, it was developed only for the NTFS file system, which makes it necessary to

develop a tool with the same function for HFS+, APFS, and Ext3/4. Even though similar features are provided

in existing forensic tools, it is difficult to find tools with specialized functions for cluster analysis.

There have been several studies that have performed analysis of disk clusters. Hargreaves provides a

discussion of the development of a prototype visualization tool that could be used for examining application

or operating system files that themselves contain allocated and unallocated blocks, and demonstrates how a

visualization could assist in identifying areas that are unallocated and therefore may contain deleted data of

interest [3].

M. Karresand et. al. insisted on an approach that builds on the principle of searching, where it is more

probable to find what you are looking for. So, they studied the behavior of the cluster allocation algorithm in

the NTFS filesystem to see where new data is actually placed on the disk [1]. They showed that data were

more frequently allocated closer to the middle of the disk, so that area should be getting higher attention during

a digital forensic investigation of a NTFS formatted hard disk [4].

Burghardt and Feldman described a method for identifying and extracting the residual contents of deleted

files in an HFS+ file system. Their research were based on the premise that records of file I/O operations is

maintained in a journal on HFS+ file systems, and the record could be used to reconstruct recent deletions of

files. The method is effective even if the allocation blocks are separated into multiple fragments, but,

subsequent studies revealed that there were disadvantages to their studies and presented complementary

techniques [5].

Bang et.al. argued that existing Burghardt and Feldman’s research and analysis result [5] has a

drawback. The research recovers the deleted file by metadata that is maintained in a journal on HFS+ file

system, however the technique excludes specific files, so the problem needs to be reformed. They

suggested an algorithm that analyzed a journal in the HFS+ file system in detail. And they demonstrated

that the deleted file could be recovered from the extracted metadata using this algorithm without the

excluded file [6].

Cho proposed a method to manipulate the fragmentation of disks by arbitrarily allocating and releasing the status

of a disk cluster in the NTFS file system. The method allowed experiments to be performed in several studies related

to fragmentation problems on disk clusters. The author indicated the importance of having a cluster analysis tool

to show and analyze the results of experiments, including a test on the performance of disk defragmentation tools

according to the state of fragmentation, the experimental environment for fragmented file carving methods for digital

forensics, the setup of cluster fragmentation for testing the robustness of data hiding methods within directory indexes,

and a test for the file system's disk allocation methods for the various versions of Windows [7].

In this study, a tool named FACT (Forensic Analyzer based Cluster Information Tool) was developed for

analyzing the state of clusters in the HFS+ file system, and for use in digital forensics. The tool displays

comprehensive information about files and directories. That is, a function is provided to display a unique

number for a file/directory, the total number of clusters, the start location of the cluster, timestamp information

of the file/directory, etc. In addition, information related to the structure of the directory and the cluster is

provided with a visualization. This tool employs the HFS+ file system analysis in C/C++, and the user interface

180 Development of a Forensic Analyzing Tool based on Cluster Information of HFS+ filesystem

is graphically provided using the Tkinter library written in Python language. These programs were developed

to work in the macOS environment.

Section 2 of this paper describes the basic structure of the HFS+ filesystem and the structure of the catalog

B-tree. Section 3 describes the main features of FACT, and Section 4 describes the purposes and functions of

the library produced to implement FACT, and the paper concludes in Section 5.

2. Retrieval of Cluster Information in the HFS+ filesystem

2.1 HFS+ Filesystem Basic

HFS+ uses a number of structures to manage the data organization on the volume. These structures include

the volume header, the catalog file, the extents overflow file, the attributes file, the allocation file (bitmap),

and the startup file. The volume header, which every HFS Plus volume must have, contains file system

attributes, such as the version and the allocation block size, and information to locate the metadata files. And

the volume header contains information about the date and time of the volume's creation and the number of

files on the volume, as well as the location of the other key structures on the volume [8].

The volume header is always located at 1024 bytes from the start of the volume. A copy of the volume

header, i.e., the alternate volume header, is stored starting at 1024 bytes before the end of the volume. The first

1024 bytes space in the volume is a reserved area, and the last 512 bytes of the volume after the alternate

volume header are also reserved. All of the allocation blocks containing the volume header, alternate volume

header, the reserved areas before the volume header, and after the alternate volume header, are marked as used

in the allocation file [9].

HFS Plus has five special files, which store the file system structures required to access folders, user files,

and attributes. The special files are the catalog file, the extents overflow file, the allocation file, the attributes

file and the startup file. Special files only have a data fork, and the extents of that fork are described in the

volume header [8].

The allocation file has bitmap information which tracks the allocation status of each block in the volume.

The catalog file contains metadata for each file and a directory on the volume. The extents overflow file has

cluster location, and run-length information for forks that have more than eight extents allocated to them. The

attributes file is a special file which contains additional data for a file or a directory. The startup file contains

information used for booting the system [10]. Figure 1 shows the organization of the HFS volumes, where the

five special files depict the order and a location in a volume. Among these special files, the important files

with cluster-related information are the bitmap file and the catalog file. Above all, it is very important to

analyze catalog files because the catalog files contain a lot of meta-information about the files/directories and

the clusters in which they are stored.

International Journal of Internet, Broadcasting and Communication Vol.13 No.3 178-192 (2021) 181

Figure 1. Organization of HFS Plus Volumes[9]

2.2 Catalog File

The location of the first block of the catalog file, i.e., the head node of the file, is stored in the volume header

file. The catalog file contains the metadata of all the files and folders in a volume, including creation,

modification and access date, permissions, file identifier, and information about the user who created the file

[9].

HFS+ maintains a list of the fork’s extents that tracks allocation blocks belonging to a fork. An extent is a

contiguous range of allocation blocks allocated to some fork by a pair of numbers, in which the first allocation

block number and the number of allocation blocks are as shown in Figure 3. The first eight extents of each

fork are stored in a user catalog file, and any additional extents are stored in the extents overflow file [11].

The catalog file is used to maintain information about the hierarchy of files and folders on HFS+. A catalog

file is organized as a B-Tree and hence consists of a head node, index nodes, leaf nodes, and map nodes. The

first location of the extent in the catalog file is stored in the volume header. The node number of the root node

of the B-tree can be obtained from the catalog file's header node. The node size of the catalog file must be at

least 4 KB, but the actual implemented size of one HFS+ catalog record is 8K bytes [9].

Each file or folder in the catalog file is assigned a unique CNID (Catalog Node ID). The CNID is the folder

ID for directory and the file ID for file, respectively. A parent ID is assigned to the CNID of the folder

containing the file or folder for any given file or folder.

The catalog file key consists of the parent folder's CNID and the name of the file or folder using the

HFSPlusCatalogKey structure type, as in Figure 2(d). A catalog file leaf node can contain four different types

of data records, i.e., a folder record, a file record, a folder thread record, and a file thread record. The folder

and the file thread record are used to map the file or folder ID to the actual parent directory ID and name. The

182 Development of a Forensic Analyzing Tool based on Cluster Information of HFS+ filesystem

catalog folder record is used to hold information about a folder on the volume. The HFSPlusCatalogFolder

structure type, as shown in Figure 2(b), is used to hold information about a directory on the volume. The

HFSPlusCatalogFile structure type in Figure 2(a) is used to store file data. The HFSPlusCatalogThread

structure type in Figure 2(c) for the catalog thread record is used to link a CNID to a file or directory record

using that CNID [9].

 The B-trees structure is used for the catalog, extents overflow, and attributes files. A B-tree is stored in a file

data fork. Each B-tree has a HFSPlusForkData structure, as in Figure 3, in the volume header that describes

the size and initial extents of that data fork.

 There are four kinds of B-tree in the HFS+, and each B-tree contains a single header node. The header node

is always the first node in the B-tree. It contains the information needed to find other any other node in the tree.

Map nodes contain map records, which hold any allocation bitmap data that describes the free nodes in the B-

tree, that overflow the map record in the header node. The index nodes have a pointer to link sub-nodes that

determine the structure of the B-tree. Leaf nodes contain several data records that represent the data associated

with a given key, and the key for each data record is unique [11].

 Figure 2. Structure of a HFS+ Catalog Related Structure [9]

(a) HFSPlusCatalofFile (b) HFSPlusCatalofFolder

(c) HFSPlusCatalofThread (d) HFSPlusCatlogKey

International Journal of Internet, Broadcasting and Communication Vol.13 No.3 178-192 (2021) 183

 Figure 3. Structure of a HFS+ Fork Data and Extent Record [9]

2.3 Volume Header

The HFS+ volume contains a volume header 1024 bytes offset from the start of the volume. The volume

header contains information about the whole partition, which makes it an HFS+ volume. Given the importance

of the volume header information, an identical copy is kept at the end of the partition, which is known as the

alternate volume header. It is stored starting 1024 bytes before the end of the volume. The alternate volume

header is intended solely for use in disk repair. The volume header is updated when the length or location is

changed in the special files [12].

Figure 4 shows the HFS+ volume header structure of the HFSPlusVolumeHeader type, which includes a

volume header signature, attributes for the entire volume, the location of a journal file, its date of creation,

modificatio, backup, checked and so on. There is also some summary information for the volume, such as the

total number of files and folders on it, and the number of unused allocation blocks. There is also location and

size information about the special files containing file system information, such as allocation file, extents file,

catalog file, attribute file, startup file [11].

184 Development of a Forensic Analyzing Tool based on Cluster Information of HFS+ filesystem

Figure 4. Volume Header Structure[9]

2.4 Allocation File

Information about the current allocated cluster is stored in an allocation file. HFS+ uses the allocation file

to keep track of whether each allocation cluster is occupied or not. The contents of the allocation file is a

bitmap data. The bitmap data contains one bit for each corresponding allocation cluster. If the corresponding

allocation cluster is currently being occupied by some content, the bit is set, otherwise if the corresponding

allocation cluster is empty, the bit is cleared [11].

Each byte has the status of eight allocation clusters. A byte b has eight bits as (b1 b2 b3 b4 b5 b6 b7 b8). Within

the byte b, the most significant bit b1 holds information about the allocation cluster with the lowest cluster

number, the least significant bit b8 holds information about the allocation cluster with the highest cluster

number. The size of the allocation file is directly related to the number of allocation clusters in the volume,

which depends both on the disk size and on the numbers of allocation clusters [9].

International Journal of Internet, Broadcasting and Communication Vol.13 No.3 178-192 (2021) 185

3. Features of FACT(Forensic Analyzer based Cluster Information Tool)

3.1 Overview

FACT consists of three features: Cluster based analysis, B-tree based analysis, and Directory based analysis.

Basically, it was developed for cluster analysis, and in this tool the feature of cluster visualization plays a

central role. This allows users to distinguish between system files and regular files using a visualization of the

metadata and file/directory information. A B+tree structure is used to manage the metadata, as a catalog of

HFS+. The B-tree based analysis analyzes the catalog data contained in the B-tree node and extracts it as data

for meaningful forensic analysis. The directory based analysis is implemented using a general file and directory

hierarchic structure from the leaf nodes of the B-tree, with cluster information. This is fundamentally different

from obtaining directory information through the file system.

3.2 Cluster based Analysis

FACT allows system files containing metadata to be distinguished from a user’s regular files. Visualization

of the metadata and file/directory information is performed using a coloring method. When a certain cluster is

allocated, a color is displayed indicating the type of the file/directory. When a cluster is unallocated, it is

displayed in gray. In this way the assigned status can be easily and intuitively recognized.

When a cluster cell is clicked, the color of the contents corresponding to the cell changes to “red” to indicate

that it has been selected. If you double-click on it, the contents of the corresponding file/directory are displayed.

In Sysinternals' DiskView, only the file name, path, and basic property information of the selected

file/directory are displayed, but in the FACT tool, a compound linkage feature is implemented so that you can

see the meta information of all files and the contents in the file.

⚫ Cluster coloring

⚫ File system metadata display

⚫ File/Directory information display

⚫ Cluster allocation status display

3.3 B-tree based Analysis

One of the major features of the FACT tool is that it correlates information in clusters and B-tree nodes. The

tool is designed so that the B-tree nodes are displayed by double-clicking a cluster located with catalog B-tree

data. This function is a unique feature of FACT and is not provided by other forensic tools. There is a window

which displays basic B-tree information along with various B-tree catalog information. Starting from the root

node of the B-tree, through the index node to the leaf node, the B-tree nodes are displayed in the form of a tree

diagram. The B-tree used here, to be precise, a B+ tree, has a structure in which leaf nodes are sequentially

connected. All of the file/directory information is contained in this leaf node, so the tool has a feature that

shows only leaf nodes. The tree diagram of the B-tree structure can be selectively displayed either in a

simplified form, or with the entire form of the B-tree.

In general, when conducting digital forensic investigations, the data stored on a storage device is analyzed

in a static form. In special cases, such as when analyzing anti-forensic cases, there may be situations in which

forensic analysis must be performed using a special method. If an experimental study on dynamic changes of

186 Development of a Forensic Analyzing Tool based on Cluster Information of HFS+ filesystem

the B-tree is necessary, a feature implemented in the FACT tool can be used. This is a very special feature that

can conduct forensic analysis of temporal changes in files and directories.

To implement the feature, a B-tree snapshot function for the HFS+ filesystem is provided. It provides a

planar function and a temporal function for cluster information. This feature was created to help experimentally

determine how disk clusters and B-trees are stored on the disk when file/directory creation and deletion occur.

The core feature is that by comparing snapshots before and after file/directory change, the internal changes to

the b-tree node stored in the cluster can be compared and contrasted.

There are two ways to display the B-tree mode. One is text mode and the other is graphic mode. Both display

the same content but in different ways. In text mode, all of the B-tree contents are displayed in the console

window or terminal window. Users can capture text and save it as a file, which can be edited and utilized. The

graphic mode is a feature provided for visualization. The advantage is that the structure of the b-tree can be

easily understood intuitively, and with the added user interface capabilities, much more functionality can be

displayed interactively.

⚫ Text mode display

⚫ Graphic mode display

⚫ Leaf node only display

⚫ B-tree snap shot

3.4 Directory based Analysis

The FACT tool provides a directory based analysis method. This method provides two functions: a directory

tree display and a directory reconstruction method with only leaf nodes. The directory display method has a

general directory tree configuration, which uses the same concept as the system used for file management in

the operating system. When you click on a directory list or a file list, the corresponding contents and

information are displayed.

In the FACT tool, a method of configuring a directory by reconstructing the metadata in the HFS+ file

system is implemented, that is, the information in the catalog b-tree. This directory reorganization method uses

only leaf node information. Reconstructing the directory with only the leaf node information means that the

directory can be built robustly when the index node information is lost. This method can be used when it is

difficult to obtain accurate file system information due to partial loss of disk information. So far, this method

has been implemented for a case in which all of the leaf nodes were normally configured. In a subsequent

study it will be applied to cases where the connection of the leaf node is partially lost, or the contents of the b-

tree node clusters are damaged.

⚫ Directory tree display

⚫ Directory reconstruction based only leaf node

Figure 3 shows the overall configuration of FACT. The three major analysis components constituting this

tool are indicated: b-tree analysis, cluster based analysis, and directory based analysis.

International Journal of Internet, Broadcasting and Communication Vol.13 No.3 178-192 (2021) 187

Figure 3. Feature Configuration of FACT

4. Functions for Implementation of FACT

4.1 Overview

The FACT tool provides a directory based analysis method. This method provides three analysis features, a

cluster based analysis, B-tree based analysis, and Directory based analysis. The cluster based analysis is the

main feature, and was basically we developed for cluster analysis. The cluster visualization feature plays a

central role in the FACT tool. The FACT tool is programmed with two programming languages, C/C++ and

Python. The core part for analyzing the HFS+ filesystem was programmed in C/C++ and the visualization part

is implemented by Python Tkinter library. The following section shows how the FACT tool is implemented,

and the executed result is shown.

4.2 Development Environments

⚫ OS: macOS Big Sur version 11.2.2

⚫ Application Type : macOS console program, Python execution program

⚫ Disk Format : HFS+

⚫ Target Storage Device: USB memory(16GB)

⚫ Disk Allocation Cluster Size : 4,096 bytes

⚫ Programming Language: C/C++, Python 3.9.0

⚫ Programming Tools: Xcode v11.6, Python IDLE 3.9.0, Spyder 5.0.3

4.3 Implemented functions for FACT core features

The FACT are composed of three analysis features, the cluster based analysis, B-tree analysis, and

Directory analysis based on core features. Several functions have been produced for common use by these

analysis features. The FACT core features were developed using the C/C++ language, and features HFS+

188 Development of a Forensic Analyzing Tool based on Cluster Information of HFS+ filesystem

filesystem storage open and close, HFS+ Volume Information Parsing, HFS+ Allocation Status Information,

Header record analysis, B-tree catalog node parsing, B-tree catalog index record parsing, B-tree catalog key

parsing, B-tree catalog file/folder/thread parsing, and B-tree catalog file block information parsing functions.

The prototypes of the functions implemented in each function are as follows.

⚫ HFS+ filesystem storage open and close function:

unsigned int openHFSPlusDisk(FILE* f)

unsigned int closeHFSPlusDisk(FILE* f)

⚫ HFS+ Volume Information Parsing:

getVolumeHeaderInfo(FILE* f, HFSPlusVolumeHeader* hfsplus_header)

printVolumeHeaderInfo(HFSPlusVolumeHeader* hfsplus_header)

int proofCatalogBySize()

⚫ HFS+ Allocation Status Information

unsigned int checkAllocation(FILE* f)

BOOL isAllocated(int clusterNo, FILE* f)

void dispAllocation(int clusterNo, FILE* f)

⚫ Header record analysis function:

int getHeaderRecordInfo(BTHeaderRec* header_rec, const unsigned char* p)

int printHeaderRecordInfo(BTHeaderRec* header_rec)

int printHeaderRecordUserdata(const unsigned char* p)

int getHeaderRecordBitmap(const unsigned char* p, unsigned char *bitmap)

⚫ B-tree catalog node parsing functions:

static uint32_t getNextNode(unsigned char* catalog, uint32_t node)

int getNodeDescriptor(BTNodeDescriptor* node_desc, const unsigned char* p)

int printNodeDescriptor(BTNodeDescriptor* node_desc)

unsigned char* nextNodedescOffset(const unsigned char* p)

⚫ B-tree catalog index record parsing functions:

unsigned char* nextIndexOffset(unsigned char* qq, uint16_t length)

int getIndexRecordItem(const unsigned char* q, HFSPlusCatalogIndex* catalogIndex, int rec)

void printIndexRecordItem(HFSPlusCatalogIndex* catalogIndex)

⚫ B-tree catalog key parsing functions:

int getCatalogKey(const unsigned char* q, HFSPlusCatalogKey* cKey)

void printCatalogKey(HFSPlusCatalogKey* cKey)

int printHeaderRecordBitmap(const unsigned char* p)

int drawBTreeHeaderRecordBitmap(FILE* f)

⚫ B-tree catalog file/folder/thread parsing functions:

int getCatalogFolderItem(const unsigned char* q, HFSPlusCatalogFolder* cFolder)

International Journal of Internet, Broadcasting and Communication Vol.13 No.3 178-192 (2021) 189

void printCatalogFolderItem(HFSPlusCatalogFolder* cFolder)

int getCatalogFileItem(const unsigned char* q, HFSPlusCatalogFile* cFile)

void printCatalogFileItem(HFSPlusCatalogFile* cFile)

void drawCatalogFileContents(FILE *fp, HFSPlusCatalogFile* cFile)

int getCatalogThreadItem(const unsigned char* q, HFSPlusCatalogThread* cThread)

void printCatalogThreadItem(HFSPlusCatalogThread* cThread)

⚫ B-tree catalog file block information parsing functions:

uint32_t getFileBlockInfo(HFSPlusCatalogFile* cFile, uint32_t* fLocation)

void printFileBlockInfo(HFSPlusCatalogFile* cFile)

4.4 Implemented functions for Cluster Based Analysis

The functions created to perform the Cluster Based Analysis are as follows. These were mainly designed

to display information pertaining to clusters.

⚫ Cluster based analysis related functions:

bTreeNode* getNodeLink(unsigned char* catalog, int nodeNum)

int getCatalogBTreeInfoByIndex(FILE* f)

void drawCluster(FILE* f,int clusterNo)

4.5 Implemented functions for B-tree Based Analysis

The functions produced to implement the B-tree based analysis are as follows. These were mainly

composed with functions for extracting the necessary elements from the b-tree data structure used to operate

the catalog data structure, and to display the corresponding information.

⚫ B-tree based analysis related functions:

void drawDirTreeByLeafInfo(DirTree* t, int No, int depth)

int getDirTreeByLeafInfo(FILE* f)

int drawCatalogClustersBySequential(FILE* f)

int drawBTreeByIndex(bTreeNode* link)

4.6 Implemented Functions for Directory Based Analysis

The functions produced to implement the Directory based analysis are as follows. These functions

typically use the same directory approach used by operating systems. However, the directory function is not

designed to operate via the OS, but implements the directory by reconstructing the catalog information of the

HFS + file system. It is designed for users familiar with directory structures.

⚫ Directory based analysis related functions:

int getDirTreeFromNode(unsigned char* catalog, uint32_t node)

void drawTree(DirTree* t, int No, int depth)

void printDirTreeItemListAll(DirTree* t,int itemNum)

190 Development of a Forensic Analyzing Tool based on Cluster Information of HFS+ filesystem

int getFileItemFromNodeByName(unsigned char* catalog, uint32_t node,HFSUniStr255 fName,

HFSPlusCatalogFile* cFileCB)

4.7 Implemented functions for Display

Python's Tkinter library is used to implement the graphical user interface. The GUI is commonly used for

three display functions, that is, the Cluster display, B-tree display, and Directory display. Each function

consists of functions under the following functions.

Figure 4 shows the configuration for FACT, which is composed of three analysis features, the cluster-based

analysis, B-tree analysis, and Directory analysis based on core features. The FACT core features have many

functions which were developed using the C/C++ language, and the Python based Tkinter drawing library was

used to develop the FACT display function. Figure 5 shows a screenshot of the cluster-based analysis window,

the “red” cells show the selected file “testData.pdf”, and the hexadump window shows the content of the

selected file.

⚫ Display drawing entry-point function:

def mainDraw() :

def win_exit() :

⚫ Cell and tree drawing function

def lineDraw(num) :

def drawCluster(fname, clusterNo) :

def hexdump(f, pos, cluster_size, y) :

⚫ Canvas zooming function

def ZoomIn() :

def ZoomOut() :

⚫ GUI I/O(mouse, keyboard I/O) function

def input_value(sizeValue) :

def tConfigure(event) :

def sConfigure(event) :

def tClick(event) :

def sClick(event) :

⚫ Popup window function

def delete(dummy_event):

def newWindow(dummy_event) :

def pop_window(dummy_event) :

⚫ Property display function

def Vproperties() :

def Legend() :

International Journal of Internet, Broadcasting and Communication Vol.13 No.3 178-192 (2021) 191

Figure 4. Classification of Implemented functions for FACT

Figure 5. Screenshot of FACT

192 Development of a Forensic Analyzing Tool based on Cluster Information of HFS+ filesystem

5. Conclusions

This study developed a forensic tool called FACT for cluster-centered work, and consists of three functions,

a Cluster based analysis, B-tree based analysis, and Directory based analysis. It can be used to recover deleted

files on a disk, or as a carving technique when partial missing content needs to be found and connected. The

evidence is analyzed with cluster-centered analysis. Forensics analyzing tools, such as EnCase, TSK, and X-

ways, are basically capable of getting information about disk clusters, but these are not the core functions of

the tool. Rather, like Sysinternals' DiksView tool for Windows, the tool provides more intuitive features. The

tools are also provided for macOS, and cluster analysis tools are very rare.

It must be useful if the forensics functionality of the FACT is extended to tools such as Sysinternals'

DiskView. Many tools are designed for Windows, so it is important to develop tools that can also be used with

MacOS. For these two reasons, the FACT tool developed in this study can be a valuable asset for cluster-

centered analysis and B-tree analysis. The developed FACT tool was programmed with two programming

languages, C/C++ and Python. The core part for analyzing the HFS+ filesystem was programmed in C/C++

and the visualization part was implemented using the Python Tkinter library. The features implemented in this

study will evolve into key forensics tools for use in MacOS, and by providing additional GUI capabilities, can

be very important for cluster-centric forensics analysis.

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea

government(MSIT) (NRF-2019R1F1A1058902)

References

[1] Data Cluster, Wikipedia, https://en.wikipedia.org/wiki/Data_cluster.

[2] DiskView v2.41, Microsoft Docs, https://docs.microsoft.com/en-us/sysinternals/ downloads/ diskview.

[3] Christopher J. Hargreaves, “Visualisation of allocated and unallocated data blocks in digital forensics,” 8th

International Annual Workshop on Digital Forensics & Incident Analysis (WDFIA 2013), pp. 133-143. Lisbon,

Portugal, May 2013.

[4] Martin Karresand, Stefan Axelsson, and Geir Olav Dyrkolbotn, "Using NTFS Cluster Allocation Behavior to Find

the Location of User Data)," Digital Investigation, Vol. 29, Supplement, pp. S51-S60, July 2019.

DOI:https://doi.org/10.1016/j.diin.2019.04.018

[5] Aaron Burghardt and Adam J. Feldman, "Using the HFS+ journal for deleted file recovery," Digital Investigation,

Vol. 5, pp. S76–S82, 2008.

DOI:10.1016/j.diin.2008.05.013

[6] S. G. Bang, S. J. Jeon, D. H. Kim and S. J. Lee “A Study to Improve Ration of Deleted File Using the Parsing

Algorithm of the HFS+ Journal File, “KIPS Transaction on Computer and Communication Systems,” Vol.5,

No.12 pp.463-470, 2016.

DOI:https://doi.org/10.3745/KTCCS.2016.5.12.463

[7] Gyu-Sang Cho, “An Arbitrary Disk Cluster Manipulating Method for Allocating Disk Fragmentation of Filesystem,”

Journal of KSDIM, Vol. 16, No. 2, pp.11-25, 2020. DOI:http://dx.doi.org/10.17662/ksdim.2020.16.2.011

[8] HFS Plus, Wikipedia, https://en.wikipedia.org/wiki/HFS_Plus.

[9] Technical Note TN1150, HFS Plus Volume Format, https://developer.apple.com/legacy/library/t

echnotes/tn/tn1150.html.

[10] Cory Altheide and Harlan Carvey, Digital Forensics with Open Source Tools, pp. 123-141, 2011

[11] Amit Singh, Mac OS X Internals: A Systems Approach, Addison-Wesley Professional, 2006.

[12] The Eclectic Light Companny, Inside the file system: 2 HFS+ volumes, https://eclecticlight.co/2020/10/07/inside-

the-file-system-2-hfs-volumes/

https://www.sciencedirect.com/book/9781597495868/digital-forensics-with-open-source-tools

	1.강남희
	2.한석희
	3.정규혁1
	4.박형근
	5.정규혁2
	6.이혜민(이상준)
	7.정수목
	8.정종인
	9.윤석훈
	10.윤태수
	11.정상옥
	12.최동운
	13.조두산
	14.최도영
	15.장은진1
	16.장은진2
	17.정환종
	18.김현철
	19.김치곤(박대우)
	20.성기혁
	21.김곡미
	22.김민중
	23.조규상

