DOI QR코드

DOI QR Code

An innovative system for novel vibration of rotating FG shell with combination of fraction laws

  • Khadimallah, Mohamed Amine (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Al-Thobiani, Faisal (Marine Engineering Department, Faculty of Maritime Studies, King Abdulaziz University) ;
  • Elbahar, Mohamed (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Al Naim, Abdullah F. (Department of Physics, College of Science, King Faisal University) ;
  • Elimame, Elaloui (Laboratory of Materials Applications in Environment, Water and Energy LR21ES15, Faculty of Sciences, University of Gafsa) ;
  • Harbaoui, Imene (Laboratory of Applied Mechanics and Engineering LR-MAI, University Tunis EI Manar-ENIT) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • 투고 : 2020.09.17
  • 심사 : 2021.07.12
  • 발행 : 2021.08.25

초록

A new model with the combination of the Galerkin's technique have been developed for functionally graded cylindrical shell. For the vibrations of rotating cylindrical shells, three volume fraction laws i.e., polynomial, trigonometric and exponential are combined mathematically. The obtained results show that by increasing length-to-radius and height-to-radius ratios, the backward and forward frequency value decreases and increases, respectively. Moreover, on increasing the rotating speed, the backward frequencies increases and forward frequencies decreases. The results generated furnish the evidence regarding applicability of present model with clamped-clamped boundary conditions and also verified by earlier published literature.

키워드

과제정보

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 16794/01/2020.

참고문헌

  1. Ahmad, M. and Naeem, M.N. (2009), "Vibration characteristics of rotating FGM circular cylindrical shell using wave propagation method", Eur. J. Scientif. Res., 36(2), 184-235.
  2. Alijani, M. and Bidgoli, M.R. (2018), "Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis", Adv. Concrete Constr., 6(6), 585. http://doi.org/10.12989/acc.2018.6.6.585.
  3. Amabili, M., Pellicano, F. and Paidoussis M.P. (1998), "Nonlinear vibrations of simply Love, A.E.H. (1888), "On the small free vibrations and deformation of thin elastic shell", Phil. Tran. R. Soc. London, A179, 491-549. https://doi.org/10.1098/rsta.1888.0016.
  4. Bryan, G.H. (1890), "On the beats in the vibration of revolving cylinder", Proc. Cambridge Philos. Soc., 7, 101-111.
  5. Chen, Y., Zhao, H.B. and Shin, Z.P. (1993), "Vibration of high speed rotating shells with calculation for cylindrical shells", J. Sound Vib., 160, 137. https://doi.org/10.1006/jsvi.1993.1010.
  6. Chung, H., Turula, P. Mulcahy, T.M. and Jendrzejczyk, J.A. (1981), "Analysis of cylindrical shell vibrating in a cylindrical fluid region", Nucl. Eng. Des., 63(1), 109-1012. https://doi.org/10.1016/0029-5493(81)90020-0.
  7. Demir, A.D. and Livaoglu, R. (2019), "The role of slenderness on the seismic behavior of ground-supported cylindrical silos", Adv. Concrete Constr., 7(2), 65. http://doi.org/10.12989/acc.2019.7.2.065.
  8. Di Taranto, R.A. and Lessen, M. (1964), "Coriolis acceleration effect on the vibration of rotating thin-walled circular cylinder", Tran. ASME, J. Appl. Mech., 31, 700-701. https://doi.org/10.1115/1.3629733.
  9. Ergin, A. and Temarel, P. (2002), "Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell", J. Sound Vib., 254(5), 951-965. https://doi.org/10.1006/jsvi.2001.4139.
  10. Fox, C.H.J. and Hardie, D.J.W. (1985), "Harmonic response of rotating cylindrical shell", J. Sound Vib., 101, 495. https://doi.org/10.1016/S0022-460X(85)80067-5.
  11. Ghosh, A., Miyamoto, Y., Reimanis, I. and Lannutti, J.J. (1997), "Functionally graded materials, manufacture, properties and applications. Ceramic transactions", AM Ceram. Soc., 76, 171-89.
  12. Heydarpour, Y., Malekzadeh, P., Haghighi, M.G. and Vaghefi, M. (2012), "Thermoelastic analysis of rotating laminated functionally graded cylindrical shells using layerwise differential quadrature method", Acta Mechanica, 223(1), 81-93. https://doi.org/10.1007/s00707-011-0551-6.
  13. Hussain, M. and Selmi, A. (2020), "Analytical vibration of FG cylindrical shell with ring support based on various configurations", Adv. Concrete Constr., 9(6), 557-568. https://doi.org/10.12989/acc.2020.9.6.557.
  14. Hussain, M. and Selmi, A. (2020), "Effect of Pasternak foundation: Structural modal identification for vibration of FG shell", Adv. Concrete Constr., 9(6), 569-576. https://doi.org/10.12989/acc.2020.9.6.569.
  15. Jweeg, M.J. and Alazzawy, W.I. (2007), "A suggested analytical solution for laminated closed cylindrical shells using General Third Shell Theory (GTT)", Al-Nahrain J. Eng. Sci., 10(1), 11-26
  16. Jweeg, M.J. and Majeed, W.I. (2009), "Free vibration Analysis solution for laminated truncated conical shells using high orde theory", Proceedings of the 6 th Science Conference of the College of Engineering, University of Baghdad, 3, 208-225.
  17. Jweeg, M.J., Alazzawy, W.I. and Dep, M.E. (2010), "A study of free vibration and fatigue for cross-ply closed cylindrical shells using General Third shell Theory (GTT)", J. Eng., 16(6), 5170-5184.
  18. Kagimoto, H., Yasuda, Y. and Kawamura, M. (2015), "Mechanisms of ASR surface cracking in a massive concrete cylinder", Adv. Concrete Constr., 3(1), 39. http://doi.org/10.12989/acc.2015.3.1.039.
  19. Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1-2), 1-4. https://doi.org/10.1016/S1359-8368(96)00016-9.
  20. Lam K.Y. and Loy, C.T. (1994), "On vibration of thin rotating laminated composite cylindrical shells", J. Sound Vib., 116, 198. https://doi.org/10.1016/0961-9526(95)91289-S.
  21. Li, H. and Lam, K.Y. (1998), "Frequency characteristics of a thin rotating cylindrical shell using the generalized differential quadrature method", Int. J. Mech. Sci., 40(5), 443-459. https://doi.org/10.1016/S0020-7403(97)00057-X.
  22. Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41, 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
  23. Malekzadeh, P. and Heydarpour, Y. (2012), "Free vibration analysis of rotating functionally graded cylindrical shells in thermal environment", Compos. Struct., 94(9), 2971-2981. https://doi.org/10.1016/j.compstruct.2012.04.011.
  24. Malekzadeh, P. and Heydarpour, Y. (2013), "Free vibration analysis of rotating functionally graded truncated conical shells", Compos. Struct., 97, 176-188. https://doi.org/10.1016/j.compstruct.2012.09.047.
  25. Malekzadeh, P., Heydarpour, Y., Haghighi, M.G. and Vaghefi, M. (2012), "Transient response of rotating laminated functionally graded cylindrical shells in thermal environment", Int. J. Press. Ves. Pip., 98, 43-56. https://doi.org/10.1016/j.ijpvp.2012.07.003.
  26. Mesbah, H.A. and Benzaid, R. (2017), "Damage-based stress-strain model of RC cylinders wrapped with CFRP composites", Adv. Concrete Constr., 5(5), 539. http://doi.org/10.12989/acc.2017.5.5.539.
  27. Najafizadeh, M.M. and Isvandzibaei, M.R. (2007), "Vibration of (FGM) cylindrical shells based on higher order shear deformation plate theory with ring support", Acta Mechanica, 191, 75-91. http/10.1007/s00707-006-0438-0.
  28. Padovan, J. (1975), "Travelling waves vibrations and buckling of rotating anisotropic shells of revolution by finite element", Int. J. Solid Struct., 11(12), 1367-1380. https://doi.org/10.1016/0020-7683(75)90064-5.
  29. Penzes, R.L.E. and Kraus, H. (1972), "Free vibrations of prestresses cylindrical shells having arbitrary homogeneous boundary conditions", AIAA J., 10, 1309. https://doi.org/10.2514/3.6605.
  30. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7, 265-275. https://doi.org/10.12989/anr.2019.7.4.265.
  31. Saito, T. and Endo, M. (1986), "Vibrations of finite length rotating cylindrical shell", J. Sound Vib., 107, 17. https://doi.org/10.1016/0022-460X(86)90279-8.
  32. Samadvand, H. and Dehestani, M. (2020), "A stress-function variational approach toward CFRP-concrete interfacial stresses in bonded joints", Adv. Concrete Constr., 9(1), 43-54. https://doi.org/10.12989/acc.2020.9.1.043.
  33. Selmi, A. (2018), "Free vibration of axially functionally graded simply supported beams using differential transformation method", Int. J. Mater. Metal. Eng., 12(8), 368-372. https://doi.org/10.5281/zenodo.1317392.
  34. Selmi, A. (2019), "Buckling capacity of functionally graded beams: A comparative study of different shear deformation beam theories", Int. J. Comput. Mater. Sci. Eng., 8(02), 1950003. https://doi.org/10.1142/S2047684119500039.
  35. Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. http://doi.org/10.12989/anr.2019.7.5.365.
  36. Selmi, A. (2020a), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. http://doi.org/10.12989/sss.2020.26.3.361.
  37. Selmi, A. (2020b), "Dynamic behavior of axially functionally graded simply supported beams", Smart Struct. Syst., 25(6), 669-678. http://doi.org/10.12989/sss.2020.25.6.669.
  38. Selmi, A. and Bisharat, A. (2018), "Free vibration of functionally graded SWNT reinforced aluminum alloy beam", J. Vibroeng., 20(5), 2151-2164. https://doi.org/10.21595/jve.2018.19445.
  39. Sewall, J.L. and Naumann, E.C. (1968), "An experimental and analytical vibration study of thin cylindrical shells with and without longitudinal stiffeners", National Aeronautic and Space Administration; for sale by the Clearinghouse for Federal Scientific and Technical Information, Springfield, VA.
  40. Sharma, P., Singh, R. and Hussain, H, (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
  41. Sivadas, K.R. and Ganesan, N. (1964), "Effect of rotation on vibrations of moderately thin cylindrical shell", J. Vib. Acoust., 116(1), 198-202. https://doi.org/10.1115/1.2930412.
  42. Srinivasan, A.V and Luaterbach, G.F. (1971), "Travelling waves in rotating cylindrical shells", Tran. ASME, J. Eng. Indus., 93, 1229-1232. https://doi.org/10.1115/1.3428067.
  43. Suresh, S. and Mortensen, A. (1997), "Functionally gradient metals and metal ceramic composites", Part 2: Thermo Mech. Behav. Int. Mater., 42, 85-116. https://doi.org/10.1179/imr.1997.42.3.85.
  44. Swaddiwudhipong. S., Tian. J. and Wang C.M. (1995), "Vibration of cylindrical shells with ring supports", J. Sound Vib., 187(1), 69-93. https://doi.org/10.1006/jsvi.1995.0503.
  45. Toulokian, Y.S. (1967), Thermo Physical Properties of High Temperature Solid Materials, Macmillan, New York.
  46. Wang, S.S. and Chen, Y. (1974), "Effects of rotation on vibrations of circular cylindrical shells", J. Acoust. Soc. Am., 55, 1340-1342. https://doi.org/10.1121/1.1914708.
  47. Xiang, Y., Ma, Y.F., Kitipornchai, S. and Lau, C.W.H. (2002), "Exact solutions for vibration of cylindrical shells with intermediate ring supports", Int. J. Mech. Sci., 44(9), 1907-1924. https://doi.org/10.1016/S0020-7403(02)00071-1.
  48. Zohar, A. and Aboudi, J. (1973), "The free vibrations of thin circular finite rotating cylinder", Int. J. Mech. Sci., 15, 269-278. https://doi.org/10.1016/0020-7403(73)90009-X.