DOI QR코드

DOI QR Code

ER71/ETV2 Promotes Hair Regeneration from Chemotherapeutic Drug-Induced Hair Loss by Enhancing Angiogenesis

  • Lee, Tae-Jin (Department of Pathology and Immunology, Washington University School of Medicine) ;
  • Kang, Hee-Kyoung (Department of Pharmacology, School of Medicine, Jeju National University) ;
  • Berry, Jeffrey C. (Department of Medicine, Washington University School of Medicine) ;
  • Joo, Hong-Gu (College of Veterinary Medicine, Jeju National University) ;
  • Park, Changwon (Department of Molecular and Cellular Physiology, Louisiana State University Health Science Center) ;
  • Miller, Mark J. (Department of Medicine, Washington University School of Medicine) ;
  • Choi, Kyunghee (Department of Pathology and Immunology, Washington University School of Medicine)
  • 투고 : 2021.01.27
  • 심사 : 2021.03.15
  • 발행 : 2021.09.01

초록

Chemotherapy-induced alopecia and hair loss can be stressful in patients with cancer. The hair grows back, but sometimes the hair tends to stay thin. Therefore, understanding mechanisms regulating hair regeneration may improve the management of chemotherapy-induced alopecia. Previous studies have revealed that chemotherapeutic agents induce a hair follicle vascular injury. As hair growth is associated with micro-vessel regeneration, we postulated that the stimulation of angiogenesis might enhance hair regeneration. In particular, mice treated with 5-fluorouracil (5-FU) showed delayed anagen initiation and reduced capillary density when compared with untreated controls, suggesting that the retardation of anagen initiation by 5-FU treatment may be attributed to the loss of perifollicular micro-vessels. We investigated whether the ETS transcription factor ETV2 (aka ER71), critical for vascular development and regeneration, can promote angiogenesis and hair regrowth in a 5-FU-induced alopecia mouse model. Tie2-Cre; Etv2 conditional knockout (CKO) mice, which lack Etv2 in endothelial cells, presented similar hair regrowth rates as the control mice after depilation. Following 5-FU treatment, Tie2-Cre; Etv2 CKO mice revealed a significant reduction in capillary density, anagen induction, and hair restoration when compared with controls. Mice receiving lentiviral Etv2 injection after 5-FU treatment showed significantly improved anagen induction and hair regrowth. Two-photon laser scanning microscopy revealed that enforced Etv2 expression restored normal vessel morphology after 5-FU mediated vessel injury. Our data suggest that vessel regeneration strategies may improve hair regrowth after chemotherapeutic treatment.

키워드

과제정보

We thank the lab members for constructive criticism and discussions of this work. This work was supported by the NIH grants HL119291 (C.P), HL149954 and HL55337 (K.C), and the 2020 Research Grant from Kangwon National University (520200067) (T. L.).

참고문헌

  1. Amoh, Y., Li, L., Katsuoka, K. and Hoffman, R. M. (2007) Chemotherapy targets the hair-follicle vascular network but not the stem cells. J. Invest. Dermatol. 127, 11-15. https://doi.org/10.1038/sj.jid.5700486
  2. Cheng, H., Zhang, J., Li, J., Jia, M., Wang, Y. and Shen, H. (2017) Platelet-rich plasma stimulates angiogenesis in mice which may promote hair growth. Eur. J. Med. Res. 22, 39. https://doi.org/10.1186/s40001-017-0278-5
  3. Dunnill, C. J., Al-Tameemi, W., Collett, A., Haslam, I. S. and Georgopoulos, N. T. (2018) A clinical and biological guide for understanding chemotherapy-induced alopecia and its prevention. Oncologist 23, 84-96. https://doi.org/10.1634/theoncologist.2017-0263
  4. Focaccetti, C., Bruno, A., Magnani, E., Bartolini, D., Principi, E., Dallaglio, K., Bucci, E. O., Finzi, G., Sessa, F., Noonan, D. M. and Albini, A. (2015) Effects of 5-fluorouracil on morphology, cell cycle, proliferation, apoptosis, autophagy and ROS production in endothelial cells and cardiomyocytes. PLoS ONE 10, e0115686. https://doi.org/10.1371/journal.pone.0115686
  5. Grem, J. L. (1997) Mechanisms of action and modulation of fluorouracil. Semin. Radiat. Oncol. 7, 249-259.
  6. Jensen, S. A. and Sorensen, J. B. (2012) 5-fluorouracil-based therapy induces endovascular injury having potential significance to development of clinically overt cardiotoxicity. Cancer Chemother. Pharmacol. 69, 57-64. https://doi.org/10.1007/s00280-011-1669-x
  7. Kabir, A. U., Lee, T. J., Pan, H., Berry, J. C., Krchma, K., Wu, J., Liu, F., Kang, H. K., Hinman, K., Yang, L., Hamilton, S., Zhou, Q., Veis, D. J., Mecham, R. P., Wickline, S. A., Miller, M. J. and Choi, K. (2018) Requisite endothelial reactivation and effective siRNA nanoparticle targeting of Etv2/Er71 in tumor angiogenesis. JCI Insight 3, e97349. https://doi.org/10.1172/jci.insight.97349
  8. Kozlowska, U., Blume-Peytavi, U., Kodelja, V., Sommer, C., Goerdt, S., Majewski, S., Jablonska, S. and Orfanos, C. E. (1998) Expression of vascular endothelial growth factor (VEGF) in various compartments of the human hair follicle. Arch. Dermatol. Res. 290, 661-668. https://doi.org/10.1007/s004030050370
  9. Lee, D., Kim, T. and Lim, D. S. (2011) The Er71 is an important regulator of hematopoietic stem cells in adult mice. Stem Cells 29, 539-548. https://doi.org/10.1002/stem.597
  10. Lee, D., Park, C., Lee, H., Lugus, J. J., Kim, S. H., Arentson, E., Chung, Y. S., Gomez, G., Kyba, M., Lin, S., Janknecht, R., Lim, D. S. and Choi, K. (2008) ER71 acts downstream of BMP, Notch, and Wnt signaling in blood and vessel progenitor specification. Cell Stem Cell 2, 497-507. https://doi.org/10.1016/j.stem.2008.03.008
  11. Man, X. Y., Yang, X. H., Cai, S. Q., Bu, Z. Y., Wu, X. J., Lu, Z. F. and Zheng, M. (2009) Expression and localization of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 in human epidermal appendages: a comparison study by immunofluorescence. Clin. Exp. Dermatol. 34, 396-401. https://doi.org/10.1111/j.1365-2230.2008.03104.x
  12. Mecklenburg, L., Tobin, D. J., Muller-Rover, S., Handjiski, B., Wendt, G., Peters, E. M., Pohl, S., Moll, I. and Paus, R. (2000) Active hair growth (anagen) is associated with angiogenesis. J. Invest. Dermatol. 114, 909-916. https://doi.org/10.1046/j.1523-1747.2000.00954.x
  13. Ozeki, M. and Tabata, Y. (2002) Promoted growth of murine hair follicles through controlled release of vascular endothelial growth factor. Biomaterials 23, 2367-2373. https://doi.org/10.1016/S0142-9612(01)00372-6
  14. Park, C., Lee, T. J., Bhang, S. H., Liu, F., Nakamura, R., Oladipupo, S. S., Pitha-Rowe, I., Capoccia, B., Choi, H. S., Kim, T. M., Urao, N., Ushio-Fukai, M., Lee, D. J., Miyoshi, H., Kim, B. S., Lim, D. S., Apte, R. S., Ornitz, D. M. and Choi, K. (2016) Injury-mediated vascular regeneration requires endothelial ER71/ETV2. Arterioscler. Thromb. Vasc. Biol. 36, 86-96. https://doi.org/10.1161/ATVBAHA.115.306430
  15. Paus, R. and Cotsarelis, G. (1999) The biology of hair follicles. N. Engl. J. Med. 341, 491-497. https://doi.org/10.1056/NEJM199908123410706
  16. Paus, R., Haslam, I. S., Sharov, A. A. and Botchkarev, V. A. (2013) Pathobiology of chemotherapy-induced hair loss. Lancet Oncol. 14, e50-e59. https://doi.org/10.1016/S1470-2045(12)70553-3
  17. Paus, R., Stenn, K. S. and Link, R. E. (1990) Telogen skin contains an inhibitor of hair growth. Br. J. Dermatol. 122, 777-784. https://doi.org/10.1111/j.1365-2133.1990.tb06266.x
  18. Rossi, A., Caro, G., Fortuna, M. C., Pigliacelli, F., D'Arino, A. and Carlesimo, M. (2020) Prevention and treatment of chemotherapy-induced alopecia. Dermatol. Pract. Concept. 10, e2020074.
  19. Rubio-Gonzalez, B., Juhasz, M., Fortman, J. and Mesinkovska, N. A. (2018) Pathogenesis and treatment options for chemotherapy-induced alopecia: a systematic review. Int. J. Dermatol. 57, 1417-1424. https://doi.org/10.1111/ijd.13906
  20. Schneider, M. R., Schmidt-Ullrich, R. and Paus, R. (2009) The hair follicle as a dynamic miniorgan. Curr. Biol. 19, R132-R142. https://doi.org/10.1016/j.cub.2008.12.005
  21. Trueb, R. M. (2010) Chemotherapy-induced hair loss. Skin Therapy Lett. 15, 5-7.
  22. Xiao, Y., Woo, W. M., Nagao, K., Li, W., Terunuma, A., Mukouyama, Y. S., Oro, A. E., Vogel, J. C. and Brownell, I. (2013) Perivascular hair follicle stem cells associate with a venule annulus. J. Invest. Dermatol. 133, 2324-2331. https://doi.org/10.1038/jid.2013.167
  23. Yano, K., Brown, L. F. and Detmar, M. (2001) Control of hair growth and follicle size by VEGF-mediated angiogenesis. J. Clin. Invest. 107, 409-417. https://doi.org/10.1172/JCI11317
  24. Yeager, C. E. and Olsen, E. A. (2011) Treatment of chemotherapy-induced alopecia. Dermatol. Ther. 24, 432-442. https://doi.org/10.1111/j.1529-8019.2011.01430.x