DOI QR코드

DOI QR Code

Anticancer Activity of Indeno[1,2-b]-Pyridinol Derivative as a New DNA Minor Groove Binding Catalytic Inhibitor of Topoisomerase IIα

  • Jeon, Kyung-Hwa (College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University) ;
  • Shrestha, Aarajana (College of Pharmacy, Yeungnam University) ;
  • Jang, Hae Jin (College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University) ;
  • Kim, Jeong-Ahn (College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University) ;
  • Sheen, Naeun (College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University) ;
  • Seo, Minjung (College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University) ;
  • Lee, Eung-Seok (College of Pharmacy, Yeungnam University) ;
  • Kwon, Youngjoo (College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University)
  • Received : 2020.12.18
  • Accepted : 2021.04.07
  • Published : 2021.09.01

Abstract

Topoisomerase IIα has been a representative anti-cancer target for decades thanks to its functional necessity in highly proliferative cancer cells. As type of topoisomerase IIα targeting drugs, topoisomerase II poisons are frequently in clinical usage. However, topoisomerase II poisons result in crucial consequences resulted from mechanistically induced DNA toxicity. For this reason, it is needed to develop catalytic inhibitors of topoisomerase IIα through the alternative mechanism of enzymatic regulation. As a catalytic inhibitor of topoisomerase IIα, AK-I-191 was previously reported for its enzyme inhibitory activity. In this study, we clarified the mechanism of AK-I-191 and conducted various types of spectroscopic and biological evaluations for deeper understanding of its mechanism of action. Conclusively, AK-I-191 represented potent topoisomerase IIα inhibitory activity through binding to minor groove of DNA double helix and showed synergistic effects with tamoxifen in antiproliferative activity.

Keywords

Acknowledgement

This work was supported by grants from National Research Foundation of Korea (NRF) grants funded by the Korean government (MSIT) (2018R1A5A2025286, 2017R1A2B2003944, and 2019R1I1A1A01050921).

References

  1. An, X., Xu, F., Luo, R., Zheng, Q., Lu, J., Yang, Y., Qin, T., Yuan, Z., Shi, Y., Jiang, W. and Wang, S. (2018) The prognostic significance of topoisomerase II alpha protein in early stage luminal breast cancer. BMC Cancer 18, 331. https://doi.org/10.1186/s12885-018-4170-7
  2. Baldin, V., Lukas, J., Marcote, M. J., Pagano, M. and Draetta, G. (1993) Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. 7, 812-821. https://doi.org/10.1101/gad.7.5.812
  3. Bau, J. T., Kang, Z., Austin, C. A. and Kurz, E. U. (2014) Salicylate, a catalytic inhibitor of topoisomerase II, inhibits DNA cleavage and is selective for the α isoform. Mol. Pharmacol. 85, 198-207. https://doi.org/10.1124/mol.113.088963
  4. Baviskar, A. T., Madaan, C., Preet, R., Mohapatra, P., Jain, V., Agarwal, A., Guchhait, S. K., Kundu, C. N., Banerjee, U. C. and Bharatam, P. V. (2011) N-fused imidazoles as novel anticancer agents that inhibit catalytic activity of topoisomerase IIα and induce apoptosis in G1/S phase. J. Med. Chem. 54, 5013-5030. https://doi.org/10.1021/jm200235u
  5. Bergant Loboda, K., Janezic, M., Stampar, M., Zegura, B., Filipic, M. and Perdih, A. (2020) Substituted 4,5'-bithiazoles as catalytic inhibitors of human DNA topoisomerase IIα. J. Chem. Inf. Model. 60, 3662-3678. https://doi.org/10.1021/acs.jcim.0c00202
  6. Capranico, G., Marinello, J. and Chillemi, G. (2017) Type I DNA topoisomerases. J. Med. Chem. 60, 2169-2192. https://doi.org/10.1021/acs.jmedchem.6b00966
  7. Catanzaro, E., Betari, N., Arencibia, J. M., Montanari, S., Sissi, C., De Simone, A., Vassura, I., Santini, A., Andrisano, V., Tumiatti, V., De Vivo, M., Krysko, D. V., Rocchi, M. B. L., Fimognari, C. and Milelli, A. (2020) Targeting topoisomerase II with trypthantrin derivatives: discovery of 7-((2-(dimethylamino)ethyl)amino)indolo[2,1-b]quinazoline-6,12-dione as an antiproliferative agent and to treat cancer. Eur. J. Med. Chem. 202, 112504. https://doi.org/10.1016/j.ejmech.2020.112504
  8. Champoux, J. J. (2001) DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70, 369-413. https://doi.org/10.1146/annurev.biochem.70.1.369
  9. Cortes, F., Pastor, N., Mateos, S. and Dominguez, I. (2003) Roles of DNA topoisomerases in chromosome segregation and mitosis. Mutat. Res. 543, 59-66. https://doi.org/10.1016/S1383-5742(02)00070-4
  10. Delgado, J. L., Hsieh, C. M., Chan, N. L. and Hiasa, H. (2018) Topoisomerases as anticancer targets. Biochem. J. 475, 373-398. https://doi.org/10.1042/BCJ20160583
  11. Ezoe, S. (2012) Secondary leukemia associated with the anti-cancer agent, etoposide, a topoisomerase II inhibitor. Int. J. Environ. Res. Public Health 9, 2444-2453. https://doi.org/10.3390/ijerph9072444
  12. Gurova, K. (2009) New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Future Oncol. 5, 1685-1704. https://doi.org/10.2217/fon.09.127
  13. Gyorffy, B., Lanczky, A., Eklund, A. C., Denkert, C., Budczies, J., Li, Q. and Szallasi, Z. (2010) An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res. Treat. 123, 725-731. https://doi.org/10.1007/s10549-009-0674-9
  14. Isaacs, R. J., Davies, S. L., Sandri, M. I., Redwood, C., Wells, N. J. and Hickson, I. D. (1998) Physiological regulation of eukaryotic topoisomerase II. Biochim. Biophys. Acta 1400, 121-137. https://doi.org/10.1016/S0167-4781(98)00131-6
  15. Jeon, K. H., Park, C., Kadayat, T. M., Shrestha, A., Lee, E. S. and Kwon, Y. (2017) A novel indeno[1,2-b]pyridinone derivative, a DNA intercalative human topoisomerase IIα catalytic inhibitor, for caspase 3-independent anticancer activity. Chem. Commun. 53, 6864-6867. https://doi.org/10.1039/C7CC02372C
  16. Kadayat, T. M., Park, S., Shrestha, A., Jo, H., Hwang, S. Y., Katila, P., Shrestha, R., Nepal, M. R., Noh, K., Kim, S. K., Koh, W. S., Kim, K. S., Jeon, Y. H., Jeong, T. C., Kwon, Y. and Lee, E. S. (2019) Discovery and biological evaluations of halogenated 2,4-diphenyl Indeno[1,2-b]pyridinol derivatives as potent topoisomerase IIα-targeted chemotherapeutic agents for breast cancer. J. Med. Chem. 62, 8194-8234. https://doi.org/10.1021/acs.jmedchem.9b00970
  17. Larsen, A. K., Escargueil, A. E. and Skladanowski, A. (2003) Catalytic topoisomerase II inhibitors in cancer therapy. Pharmacol. Ther. 99, 167-181. https://doi.org/10.1016/S0163-7258(03)00058-5
  18. Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, P. J. (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3-26. https://doi.org/10.1016/S0169-409X(00)00129-0
  19. McClendon, A. K. and Osheroff, N. (2007) DNA topoisomerase II, genotoxicity, and cancer. Mutat. Res. 623, 83-97. https://doi.org/10.1016/j.mrfmmm.2007.06.009
  20. Nitiss, J. L. (1998) Investigating the biological functions of DNA topoisomerases in eukaryotic cells. Biochim. Biophys. Acta 1400, 63-81. https://doi.org/10.1016/S0167-4781(98)00128-6
  21. Nitiss, J. L. (2009) Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer 9, 338-350. https://doi.org/10.1038/nrc2607
  22. Palchaudhuri, R. and Hergenrother, P. J. (2007) DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action. Curr. Opin. Biotechnol. 18, 497-503. https://doi.org/10.1016/j.copbio.2007.09.006
  23. Pandit, P., Patil, R., Palwe, V., Gandhe, S., Patil, R. and Nagarkar, R. (2020) Prevalence of molecular subtypes of breast cancer: a single institutional experience of 2062 patients. Eur. J. Breast Health 16, 39-43. https://doi.org/10.5152/ejbh.2019.4997
  24. Park, S., Hwang, S. Y., Shin, J., Jo, H., Na, Y. and Kwon, Y. (2019) A chromenone analog as an ATP-competitive, DNA non-intercalative topoisomerase II catalytic inhibitor with preferences toward the alpha isoform. Chem. Commun. 55, 12857-12860. https://doi.org/10.1039/C9CC05524J
  25. Pindur, U., Jansen, M. and Lemster, T. (2005) Advances in DNA-ligands with groove binding, intercalating and/or alkylating activity: chemistry, DNA-binding and biology. Curr. Med. Chem. 12, 2805-2847. https://doi.org/10.2174/092986705774454698
  26. Pommier, Y., Leo, E., Zhang, H. and Marchand, C. (2010) DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol. 17, 421-433. https://doi.org/10.1016/j.chembiol.2010.04.012
  27. Ray, A., James, M. K., Larochelle, S., Fisher, R. P. and Blain, S. W. (2009) p27Kip1 inhibits cyclin D-cyclin-dependent kinase 4 by two independent modes. Mol. Cell. Biol. 29, 986-999. https://doi.org/10.1128/MCB.00898-08
  28. Rehman, S. U., Yaseen, Z., Husain, M. A., Sarwar, T., Ishqi, H. M. and Tabish, M. (2014) Interaction of 6 mercaptopurine with calf thymus DNA--deciphering the binding mode and photoinduced DNA damage. PLoS ONE 9, e93913. https://doi.org/10.1371/journal.pone.0093913
  29. Sehested, M. and Jensen, P. B. (1996) Mapping of DNA topoisomerase II poisons (etoposide, clerocidin) and catalytic inhibitors (aclarubicin, ICRF-187) to four distinct steps in the topoisomerase II catalytic cycle. Biochem. Pharmacol. 51, 879-886. https://doi.org/10.1016/0006-2952(95)02241-4
  30. Shrestha, A., Park, S., Shin, S., Man Kadayat, T., Bist, G., Katila, P., Kwon, Y. and Lee, E. S. (2018) Design, synthesis, biological evaluation, structure-activity relationship study, and mode of action of 2-phenol-4,6-dichlorophenyl-pyridines. Bioorg. Chem. 79, 1-18. https://doi.org/10.1016/j.bioorg.2018.03.033
  31. Vollmer, T., Stewart, T. and Baxter, N. (2010) Mitoxantrone and cytotoxic drugs' mechanisms of action. Neurology 74 Suppl 1, S41-S46. https://doi.org/10.1212/WNL.0b013e3181c97f5a
  32. Wilstermann, A. M. and Osheroff, N. (2003) Stabilization of eukaryotic topoisomerase II-DNA cleavage complexes. Curr. Top. Med. Chem. 3, 321-338. https://doi.org/10.2174/1568026033452519
  33. Winick, N. J., McKenna, R. W., Shuster, J. J., Schneider, N. R., Borowitz, M. J., Bowman, W. P., Jacaruso, D., Kamen, B. A. and Buchanan, G. R. (1993) Secondary acute myeloid leukemia in children with acute lymphoblastic leukemia treated with etoposide. J. Clin. Oncol. 11, 209-217. https://doi.org/10.1200/JCO.1993.11.2.209
  34. Woessner, R. D., Mattern, M. R., Mirabelli, C. K., Johnson, R. K. and Drake, F. H. (1991) Proliferation- and cell cycle-dependent differences in expression of the 170 kilodalton and 180 kilodalton forms of topoisomerase II in NIH-3T3 cells. Cell Growth Differ. 2, 209-214.
  35. Yu, N. Y., Iftimi, A., Yau, C., Tobin, N. P., van 't Veer, L., Hoadley, K. A., Benz, C. C., Nordenskjold, B., Fornander, T., Stal, O., Czene, K., Esserman, L. J. and Lindstrom, L. S. (2019) Assessment of long-term distant recurrence-free survival associated with tamoxifen therapy in postmenopausal patients with luminal a or luminal B breast cancer. JAMA Oncol. 5, 1304-1309. https://doi.org/10.1001/jamaoncol.2019.1856

Cited by

  1. AK-I-190, a New Catalytic Inhibitor of Topoisomerase II with Anti-Proliferative and Pro-Apoptotic Activity on Androgen-Negative Prostate Cancer Cells vol.22, pp.20, 2021, https://doi.org/10.3390/ijms222011246