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REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE

FORM WITH SPECIAL STRUCTURE TENSOR FIELD

Dong Ho Lim a and Hoonjoo Kim b, ∗

Abstract. Let M be a real hypersurface in a complex space form Mn(c), c ̸= 0.
In this paper, we prove that if (∇Xϕ)Y + (∇Y ϕ)X = 0 holds on M , then M is a
Hopf hypersurface, where ϕ is the tangential projection of the complex structure of
Mn(c). We characterize such Hopf hypersurfaces of Mn(c).

1. Introduction

A complex n-dimensional Kaehlerian manifold of constant holomorphic sectional

curvature c is called a complex space form, which is denoted by Mn(c). It is well-

known that a complete and simply connected complex space form is complex ana-

lytically isometric to a complex projective space PnC, a complex Euclidean space

Cn or a complex hyperbolic space HnC, according to c > 0, c = 0 or c < 0.

In this paper, we consider a real hypersurface M in a complex space form Mn(c),

c ̸= 0. Then M has an almost contact metric structure (ϕ, g, ξ, η) induced from the

Kaehler metric and complex structure J on Mn(c). The Reeb vector field ξ is said

to be principal if Aξ = αξ is satisfied, where A is the shape operator of M and

α = η(Aξ). In this case, it is known that α is locally constant [2] and that M is

called a Hopf hypersurface.

Typical examples of Hopf hypersurfaces in PnC are homogeneous ones, and these

real hypersurfaces are given as orbits under the subgroup of the projective unitary

group PU(n + 1). Takagi [9] completely classified all such hypersurfaces into six

model spaces: A1, A2, B, C, D and E.
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On the other hand, real hypersurfaces in HnC have been investigated by Berndt

[1], Montiel and Romero [6] and so on. Berndt [1] catagorized all homogeneous Hopf

hypersurfaces in HnC as four model spaces which are said to be A0, A1, A2 and B.

If a real hypersurface M is of A1 or A2 in PnC or of A0, A1, A2 in HnC, then

M is said to be type A for simplicity.

The following theorem is a typical characterization of real hypersurfaces of type

A due to Okumura [8] for c > 0 and Montiel and Romero [6] for c < 0.

Theorem A. Let M be a real hypersurface of Mn(c), c ̸= 0, n ≥ 2. It satisfies

Aϕ− ϕA = 0 on M if and only if M is locally congruent to one of the model spaces

of type A.

We define a structure tensor field (∇Xϕ)Y on M in Mn(c) by

(∇Xϕ)Y = ∇X(ϕY )− ϕ∇XY = η(Y )AX − g(AX,Y )ξ,

by using the tangential projection and parallelism of J .

Many geometricians have studied real hypersurfaces with the conditions of the

structure tensor field and obtain some results on the classification of real hypersur-

faces in complex space form Mn(c) [4, 5, 6, 8, etc].

For the Codazzi type of structure tensor field, Lim and Kim [3] have proved the

following theorem;

Theorem B. There exists no real hypersurface of Mn(c), c ̸= 0, whose structure

tensor field is Codazzi type.

In this paper, we shall study a real hypersurface in a nonflat complex space form

Mn(c), with special conditions of structure tensor field, and give some characteriza-

tions of such a real hypersurface in Mn(c).

All manifolds are assumed to be connected and of class C∞ and real hypersurfaces

supposed to be orientable.

2. Preliminaries

Let M be a real hypersurface immersed in a complex space form Mn(c), and N

be a unit normal vector field of M . By ∇̃, we denote the Levi-Civita connection

with respect to the Fubini-Study metric tensor g̃ of Mn(c). Then the Gauss and
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Weingarten formulas are given by

∇̃XY = ∇XY + g(AX,Y )N, ∇̃XN = −AX

respectively, where X and Y are any vector fields tangent to M , g denotes the

Riemannian metric tensor of M induced from g̃, and A is the shape operator of M

in Mn(c). For any vector field X on M , we put

JX = ϕX + η(X)N, JN = −ξ,

where J is the almost complex structure of Mn(c). And we see that M induces an

almost contact metric structure (ϕ, g, ξ, η), that is,

ϕ2X = −X + η(X)ξ, ϕξ = 0, η(ξ) = 1,

g(ϕX, ϕY ) = g(X,Y )− η(X)η(Y ), η(X) = g(X, ξ)

for any vector fieldsX and Y onM . Since the almost complex structure J is parallel,

we can verify the followings from the Gauss and Weingarten formulas:

∇Xξ = ϕAX,

(∇Xϕ)Y = η(Y )AX − g(AX,Y )ξ.(2.1)

Let X, Y and Z be vector fields on M and R denote the Riemannian curvature

tensor of M . As the ambient space has holomorphic sectional curvature c, the

equations of Gauss and Codazzi are given by

R(X,Y )Z =
c

4
{g(Y, Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY

− 2g(ϕX, Y )ϕZ}+ g(AY,Z)AX − g(AX,Z)AY,

(∇XA)Y − (∇Y A)X =
c

4
{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ},

respectively.

Let Ω be an open subset of M defined by

Ω = {p ∈ M |Aξ − αξ ̸= 0}

where α = η(Aξ). We put

Aξ = αξ + µW,(2.2)

where W be a unit vector field orthogonal to ξ and µ does not vanish on Ω.
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3. Some Lemmas

In this section, we assume that Ω is not empty and recall some well known results

in [7] which will be used to prove our results.

Lemma 3.1. Let M be a Hopf hypersurface in a nonflat complex space form Mn(c).

If X is a unit vector field such that AX = λX, Then

(λ− α

2
)AϕX =

1

2
(αλ+

c

2
)ϕX.(3.1)

Lemma 3.2. The B type hypersurface in HnC has three distinct principal curva-

tures, 1
r cothu,

1
r tanhu of multiplicity n − 1 and α = 2

r tanh 2u of multiplicity 1.

On the other hand, in PnC, the type B hypersurface also has three distinct principal

curvatures, −1
r tanu of multiplicity 2p, 1

r cotu of multiplicity 2q and α = 2
r cot 2u

of multiplicity 1, where p > 0, q > 0, and p+ q = n− 1.

Lemma 3.3. Let M be a real hypersurface of Mn(c), c ̸= 0 and ξ be a principal

curvature vector with corresponding principal curvature α. If X and ϕX are principal

vector fields with principal curvatures {λ, µ} = {0,− c
2α}, then M does not exist in

Mn(c).

Using Lemmas above, we get the following important tool of this paper;

Lemma 3.4. Let M be a real hypersurface of Mn(c), c ̸= 0. If M satisfies (∇Xϕ)Y +

(∇Y ϕ)X = 0, then M is a Hopf hypersurface in Mn(c).

Proof. We assume that (∇Xϕ)Y + (∇Y ϕ)X = 0 for any vector fields X and Y . By

using (2.1) and symmetric properties of the shape operator, we have

(∇Xϕ)Y + (∇Y ϕ)X = η(Y )AX − g(AX,Y )ξ + η(X)AY − g(AY,X)ξ

= η(Y )AX + η(X)AY − 2g(AX,Y )ξ.

From the our assumption and the above equation, it follows that

η(Y )AX + η(X)AY = 2g(AX,Y )ξ.(3.2)

If we put Y = ξ into (3.2) and make use of (2.2), then we have

AX = {αη(X) + 2µg(X,W )}ξ − µη(X)W.(3.3)

If we substitute X = W into (3.3), then we obtain

AW = 2µξ.(3.4)
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Taking inner product of (3.4) with ξ and using (2.2), we have µ = 0 on Ω, then it is

a contradiction. Thus the set Ω is empty and hence M is a Hopf hypersurface. �

4. Non-existence of Real Hypersurfaces

In this section, we shall study a real hypersurface M in Mn(c) which satisfies

(∇Xϕ)Y + (∇Y ϕ)X = 0.

Theorem 4.1. Let M be a real hypersurface in Mn(c), c ̸= 0. If (∇Xϕ)Y +

(∇Y ϕ)X = 0, then we obtain λ = 0 and µ = − c
2α .

Proof. By Lemma 3.4, the real hypersurface M satisfying (∇Xϕ)Y + (∇Y ϕ)X = 0

is a Hopf hypersurface in Mn(c), that is, Aξ = αξ. Since ξ is a Reeb vector field,

the assumption (∇Xϕ)Y + (∇Y ϕ)X = 0 is given by

η(Y )AX + η(X)AY = 2g(AX,Y )ξ.(4.1)

To find the principal curvatures, we can divide equation (4.1) into three cases.

In the first case, if we put Y = ξ into (4.1), then we have

AX + η(X)Aξ = 2η(AX)ξ.(4.2)

For any vector field X ⊥ ξ on M such that AX = λX, the principal value λ = 0

follows from (4.2). From the equation (3.1), we obtain

−α

2
AϕX =

c

4
ϕX.(4.3)

If α = 0, then c = 0, and there is no real hypersurface. Now, we assume that α is not

zero. Then it follows from (4.3) that ϕX is a principal direction, say AϕX = − c
2αϕX.

Therefore, we see that the principal curvatures are constant α, λ = 0 and µ = − c
2α .

In the second case, if we substitute X = ξ into (4.1), then we obtain the principal

curvature {λ, µ} = {0,− c
2α} in a similar way to the first case.

In the last case, if any vector field X = Y is orthogonal to ξ on M and AX = λX,

then we get the principal value {λ, µ} = {0,− c
2α} by using (4.2) and (4.3).

From the above three cases, we conclude that the principal curvatures are λ = 0

and µ = − c
2α . �

Theorem 4.2. Let M be a real hypersurface in Mn(c), c ̸= 0. If (∇Xϕ)Y +

(∇Y ϕ)X = 0, then M does not exist in Mn(c).
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Proof. By Lemma 3.4 and Theorem 4.1, we know that the real hypersurface M is

a Hopf hypersurface and the principal curvatures have values of 0 and − c
2α . By

Lemma 3.3, M does not exist in Mn(c) and the proof is completed. �
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