DOI QR코드

DOI QR Code

암반단열의 교차각이 교차점에서의 용질의 혼합에 미치는 영향

Effect of Intersecting Angles of Rock Fractures on Solute Mixing at Fracture Junction

  • 김다혜 (전남대학교 지질환경과학과) ;
  • 여인욱 (전남대학교 지질환경과학과)
  • Kim, Dahye (Department of Geological and Environmental Sciences, Chonnam National University) ;
  • Yeo, In Wook (Department of Geological and Environmental Sciences, Chonnam National University)
  • 투고 : 2021.08.23
  • 심사 : 2021.08.25
  • 발행 : 2021.08.31

초록

본 연구에서는 수치모델링을 통해 단열의 교차각과 같은 기하학적 특징이 교차점에서의 유동특성과 용질의 혼합·분배에 미치는 영향을 연구하였다. Pe(Peclect number; 이류와 확산의 상대적인 비)뿐만이 아니라 단열의 교차각이 교차점에서의 용질의 혼합·분배모델을 결정하는데 있어 중요한 역할을 하는 것으로 나타났다. 교차각이 90°미만인 경우, 주입된 유동방향과 동일한 방향의 유출구로 진행하기 때문에 교차점에서 양쪽 주입구에서 온 유선들의 접촉을 용이하게 한다. 반면, 교차각이 90°보다 큰 경우 유체가 주입된 유동방향과 유출구의 방향이 반대이기 때문에, 교차점에 두 주입구에서 온 유선들 간의 접촉은 최소화 되었다. 그러므로 전자의 경우에서는 높은 Pe에서도 용질의 혼합이, 후자에서는 낮은 Pe에서도 유선경로에 따른 용질의 이동이 나타났다. 따라서 Pe < 1의 경우, 완전혼합모델이 지배적인 것으로 알려졌지만, 교차각이 150°인 경우 교차점에서 혼합뿐만이 아니라 일부는 유선의 경로를 따라 유출구로 유출되었다. 전반적으로 Pe가 0.1 - 100에서 완전혼합모델에서 유선경로모델로의 전이가 나타났지만, 이는 교차각에 따라 크게 달라진다. 교차각이 클수록(≧ 150°) Pe가 0.1 - 10에서, 교차각이 작을수록(≦ 30°) Pe가 10 - 100에서 전이가 발생하였다. Pe > 100에서는 교차각과 상관없이 유선경로모델이 더 지배적인 것으로 나타났다. Pe > 1,000에서는 교차각이 150°이상인 경우에만 100% 유선경로모델이 나타나며, 교차각이 150°미만인 경우 유선경로모델이 지배적이지만 여전히 교차점에서 용질의 혼합이 발생하였다.

This numerical study aims at analyzing the effect of flow characteristics, caused by geometrical features such as intersecting angles, on solute mixing at fracture junctions. It showed that not only Pe, the ratio of advection to diffusion, but also the intersecting angles played an important role in solute mixing at the junction. For the intersection angles less than 90°, the fluid flowed to the outlet in the same direction as the injected flow direction, which increased the contact at the junction with the streamlines coming from the different inlets. On the other hand, for the intersecting angles greater than 90°, the fluid flowed out to the outlet opposite to the flow direction in the inlet, leading to minimizing the contact at the junction. Therefore, in the former case, solute mixing occurred even at high Pe, and in the latter case, solutes transport along the streamlines even at low Pe. For Pe < 1, the complete mixing model was known to occur, but for the intersecting angle greater than 150°, no complete solute mixing occurred. Overall, the transition from the complete mixing model to the streamline-routing model occurred for Pe = 0.1 - 100, but it highly depended on the intersecting angles. Specifically, the transition occurred at Pe = 0.1 - 10 for intersecting angles ≧ 150° and at Pe = 10 - 100 for intersecting angles ≦ 30°. For Pe > 100, the streamline-routing model was dominant regardless of intersecting angles. For Pe > 1,000, the complete streamline-routing model appeared only for the intersecting angles greater than 150°. For the intersecting angles less than 150°, the streamline-routing model dominated over the complete solute mixing, but solute mixing still occurred at the fracture junction.

키워드

과제정보

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의지원을받아수행된연구임(No. 2019R1F1A1058359).

참고문헌

  1. Bear, J., Tsang, C.F. and de Marsily, G. (1993) Flow and Contaminant Transport in Fractured Rock. 1st(ed.), Academic Press, San Diego, 560p.
  2. Berkowitz, B., Naumann, C. and Smith, L. (1994) Mass transfer at fracture intersections: an evaluation of mixing models, Water Resources Research, v.30(6), p.1765-1773, doi: 10.1029/94WR00432.
  3. Blessent, D., Therrien, R. and Gable, C.W. (2011) Large-scale numerical simulation of groundwater flow and solute transport in discretely-fractured crystalline bedrock, Advances in Water Resources, v.34(12), p.1539-1552, doi: 10.1016/j.advwatres.2011.09.008.
  4. Boutt, D.F., Grasselli, G., Fredrich, J.T., Cook, B.K. and Williams, J.R. (2006) Trapping zones: The effect of fracture roughness on the directional anisotropy of fluid flow and colloid transport in a single fracture. Geophysical Research Letters, v.33, doi:10.1029/2006GL027275.
  5. Brush, D.J. and Thomson, N.R. (2003) Fluid flow in synthetic rough-walled fractures: Navier-Stokes, Stokes, and local cubic law simulations, Water Resources Research, v.39(4), doi: 10.1029/2002WR001346.
  6. Cardenas, M.B., Slottke, D.T., Ketcham, R.A. and Sharp, J.M. Jr. (2007) Navier-Stokes flow and transport simulations using real fractures shows heavy tailing due to eddies. Geophysical Research Letters, v.34, doi:10.1029/2007GL030545.
  7. Cardenas, M.B., Slottke, D.T., Ketcham, R.A. and Sharp, J.M. Jr. (2009) Effects of inertia and directionality on flow and transport in a rough asymmetric fracture, Journal of Geophysical Research, v.114, doi: 10.1029/2009JB006336.
  8. Chaudhary, K., Cardenas, M.B., Deng, W. and Bennett, P.C. (2011) The role of eddies inside pores in the transition from Darcy to Forchheimer flows, Geophysical Research Letters, v.38(24), doi: 10.1029/2011GL050214.
  9. COMSOL AB (2019). COMSOL Multiphysics Reference Manual version 5.5. Stockholm.
  10. Dessirier, B., Frampton, A. and Jarsjo, J. (2015) A global sensitivity analysis of two-phase flow between fractured crystalline rock and bentonite with application to spent nuclear fuel disposal, Journal of Contaminant Hydrology, v.182, p.25-35, doi: 10.1016/j.jconhyd.2015.07.006.
  11. Detwiler, R., Rajaram, H. and Glass, R.J. (2000) Solute transport in variable-aperture fractures: An investigation of the relative importance of Taylor dispersion and macrodispersion, Water Resources Research, v.36(7), p.1611-1625, doi: 10.1029/2000WR900036.
  12. Ji, S.H., Lee, H.B., Yeo, I.W. and Lee, K.K. (2008) Effect of nonlinear flow on DNAPL migration in a rough-walled fracture, Water Resources Research, v.44(11), doi: 10.1029/2007WR006712.
  13. Lee, H.B., Yeo, I.W., Ji, S.H. and Lee, K.K. (2010) Wettability-dependent DNAPL migration in a rough-walled fracture, Journal of Contaminant Hydrology, v.113(1-4), p.44-55, doi: 10.1016/j.jconhyd.2009.12.006.
  14. Lee, S.H., Lee, K.K. and Yeo, I.W. (2014) Assessment of the validity of Stokes and Reynolds equations for fluid flow through a rough-walled fracture with flow imaging, Geophysical Research Letters, v.42(13), p.4578-4585, doi: 10.1002/2014GL060481.
  15. Lee, S.H., Yeo, I.W., Lee, K.K. and Detwiler, R.L. (2015) Tail shortening with developing eddies in a rough-walled rock fracture, Geophysical Research Letters, v.42(15), p.6340-6347, doi: 10.1002/2015GL065116.
  16. Lee, S.H., Yeo, I.W., Lee, K.K. and Lee, S.L. (2017) The role of eddies in solute transport and recovery in rock fractures: Implication for groundwater remediation, Hydrological Processes, v.31(20), p.3580-3587. doi: 10.1002/hyp.11283.
  17. Li, C. (1995) Low peclet number mixing behavior at fracture junctions. Ph.D thesis, New Mexico Institute of Mining and Technology.
  18. Mourzenko, V.V., yousefian, F., Kolbah, B., Thovert, J.-F. and Adler, P.M. (2002) Solute transport at fracture intersections, Water Resources Research, v.38(1), p.1-14, doi: 10.1029/2000WR000211.
  19. Neretnieks, I., Eriksen, T. and Tahtinen, P. (1982) Tracer movement in a single fissure in granitic rock: Some experimental results and their interpretation, Water Resources Research, v.18(4), p.849-858, doi: 10.1029/WR018i004p00849.
  20. Oron, A.P. and Berkowitz, B. (1998) Flow in rock fractures: The local cubic law assumption reexamined, Water Resources Research, v.34(33), p.2811-2825, doi: 10.1029/98WR02285.
  21. Park, Y.J., de Dreuzy, J.R., Lee, K.K. and Berkowitz, B. (2001) Transport and intersection mixing in random fracture networks with power law length distributions, Water Resources Research, v.37(10), p.2493-2501, doi: 10.1029/2000WR000131.
  22. Park, Y.J. and Lee, K.K. (1999) Analytical solutions for solute transfer characteristics at continuous fracture junctions, Water Resources Research. v.35(5), p.1531-1537, doi: 10.1029/1998WR900002.
  23. Stockman, H.W., Li, C. and Wilson, J.L. (1997) A lattice-gas and lattice Boltzmann study of mixing at continuous fracture junctions: importance of boundary conditions, Geophysical Research Letters, v.24, p.1515-1518, doi: 10.1029/97GL51471.
  24. Tsang, C.F., Neretnieks, I. and Tsang, Y. (2015) Hydrologic issues associated with nuclear waste repositories, Water Resources Research, v.51(9), p.6923-6972, doi: 10.1002/2015WR017641.
  25. Zafarani, A. and Detwiler, R. L. (2013) An efficient time-domain approach for simulationg Pe-dependent transport through fracture intersection, Advances in Water Resources, v.53, p.198-207, doi: 10.1016/J.ADVWATRES.2012.11.011.
  26. Zhang Z. and Nemcik, J. (2013). Fluid flow regimes and nonlinear flow characteristics in deformable rock fractures. Journal of Hydrology, v.477(16), 139-151, doi: 10.1016/j.jhydrol.2012.11.024.
  27. Zhou, J.Q., Hu S.H., Fang, S., Chen, Y.F. and Zhou, C.B. (2015). Nonlinear flow behavior at low Reynolds numbers through rough-walled fractures subjected to normal compressive loading. International Journal of Rock Mechanics and Mining Sciences, v.80, p.202-218, doi: 10.1016/j.ijrmms.2015.09.027.
  28. Zimmerman, R.W., Al-Yaarubi, A., Pain, C.C. and Grattoni, C.A. (2004). Non-linear regimes of fluid flow in rock fractures. International Journal of Rock Mechanics and Mining Sciences, v.41(1), p.163-169, doi: 10.1016/j.ijrmms.2004.03.036.
  29. Zimmerman, R.W. and Yeo, I.W. (2000) Fluid flow in rock fractures: From the Navier-Stokes equations to the Cubic Law, Dynamics of Fluids in Fractured Rock, v.122, p.213-224, doi: 10.1029/GM122p0213.