DOI QR코드

DOI QR Code

Energy Efficiency Improvement of Vanadium Redox Flow Battery by Integrating Electrode and Bipolar Plate

  • Kim, Min-Young (Korea Institute of Industrial technology (KITECH)) ;
  • Kang, Byeong-Su (Korea Institute of Industrial technology (KITECH)) ;
  • Park, Sang-Jun (Korea Institute of Industrial technology (KITECH)) ;
  • Lim, Jinsub (Korea Institute of Industrial technology (KITECH)) ;
  • Hong, Youngsun (Korea Institute of Industrial technology (KITECH)) ;
  • Han, Jong-Hun (School of Chemical Engineering, Chonnam National University) ;
  • Kim, Ho-Sung (Korea Institute of Industrial technology (KITECH))
  • Received : 2021.01.04
  • Accepted : 2021.02.15
  • Published : 2021.08.28

Abstract

An integral electrode-bipolar plate assembly, which is composed of electrode, conductive adhesive film (CAF) and bipolar plate, has been developed and evaluated for application with a vanadium redox flow battery (VRB) to decrease contact resistance between electrode and bipolar plate. The CAF, made of EVA (ethylene-vinyl-acetate) material with carbon black or CNT (Carbon Nano Tube), is applied between the electrode and the bipolar plate to enable an integral assembly by adhesion. In order to evaluate the integral assembly of VRB by adhesive film, the resistivity of integral assembly and the performance of single cell were investigated. Thus, it was verified that the integral assembly is applicable to redox flow battery. Through resistance and contact resistance of bare EVA and CAF films on bipolar plate were changed. Among the adhesive films, CAF film coated with carbon black showed the lowest value in through resistance, and CAF film coated with CNT showed the lowest value in contact resistance, respectively. The efficiency of VRB single cell was improved by applying CAF films coated with carbon black and CNT, resulting in the reduced overvoltage in charging process. Therefore, the energy efficiency of both CAF films, about 84%, were improved than that of blank cell, about 79.5 % under current density at 40 mA cm-2. The energy efficiency of the two cells were similar, but carbon black coated CAF improved the coulomb efficiency and CNT coated CAF improved the voltage efficiency, respectively.

Keywords

Acknowledgement

This study has been conducted with the support of the Korea Institute of Industrial Technology as "Smart Wellness care project (kitech EO-20-0010)" and the Energy R&D program (No. 20152000000350) of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) of the Ministry of Trade, Industry, and Energy, Republic of Korea.

References

  1. C. Ponce de Leon, A. Frias-Ferrer, J. Gonzalez-Garcia, D.A. Szanto, F.C. Walsh, J. Power Sources., 2006, 160(1), 716-732. https://doi.org/10.1016/j.jpowsour.2006.02.095
  2. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J. P. Lemmon, J. Liu, Chem. Rev., 2011, 111(5), 3577-3613. https://doi.org/10.1021/cr100290v
  3. W. Wang, Q. Luo, B. Li, K. Wei, L. Li, Z. Yang, Adv. Funct. Mater., 2013, 23(8), 970-986. https://doi.org/10.1002/adfm.201200694
  4. E. Sum, M. Rychcik, M. Skyllas-Kazacos, J. Power Sources., 1985, 16(2), 85-95. https://doi.org/10.1016/0378-7753(85)80082-3
  5. M. Skyllas-Kazacos, M.Rychick, R. Robins, US Patent 5,665,212, Nov. 1988.
  6. P. Zhao , H. Zhang , H. Zhou , J. Chen , S. Gao, B. Yi, J. Power Sources., 2006, 162(2), 1416-1420. https://doi.org/10.1016/j.jpowsour.2006.08.016
  7. K. Lourenssen, J. Williams, F. Ahmadpour, R. Clemmer, S. Tasnim, J. Energy Storage., 2019, 25, 100844. https://doi.org/10.1016/j.est.2019.100844
  8. T-C. Chang, J-P. Zhang, Y-K. Fuh, J. Power Sources., 2014, 245, 66-75. https://doi.org/10.1016/j.jpowsour.2013.06.018
  9. S-K. Park, J. Shim, J.H. Yang, C-S. Jin, B.S. Lee, Y-S. Lee, K-H. Shin, J-D. Jeon, Electrochim Acta., 2014, 116, 447-452. https://doi.org/10.1016/j.electacta.2013.11.073
  10. K. Oh, S. Won, H. Ju, Electrochim. Acta., 2015, 181, 13-23. https://doi.org/10.1016/j.electacta.2015.02.212
  11. M. Kazacos, M. Skyllas-Kazacos, J. Electrochem. Soc., 1989, 136(9), 2759-2760. https://doi.org/10.1149/1.2097588
  12. S. Zhong, M. Kazacos, R.P. Burford, et al., J. Power Sources., 1991, 36(1), 29-43. https://doi.org/10.1016/0378-7753(91)80042-V
  13. V. Haddadi-Asl, M. Kazacos, M. Skyllas-Kazacos, J. Appl. Electrochem., 1995, 25(1), 29-33. https://doi.org/10.1007/BF00251261
  14. V. Haddadi-Asl, M.Kazacos, M.S. Kazacos, S. Zhong, US Patent 5,665,212, Sep. 1997.
  15. P. Qian, H. Zhang, J. Chen, Y. Wen, Q. Luo, Z. Liu, D. You and B. Yi, J. Power Sources., 2008, 175(1), 613-620. https://doi.org/10.1016/j.jpowsour.2007.09.006
  16. T. J. Davies, J. J. Tummino, C-Journal of Carbon Research., 2018, 4(1), 8. https://doi.org/10.3390/c4010008
  17. T. H. Noh, M. Y. Kim, D. H. Kim, S. H. Yang, J. H. Lee, H. S. Park, H. S. Noh, M. S. Lee, H. S. Kim, J. Electrochem. Sci. Technol., 2017, 8(2), 155-161. https://doi.org/10.5229/JECST.2017.8.2.155
  18. L. D. Brown, T. P. Neville, R. Jervis, T. J. Mason, P. R. Shearing, D.J.L. Brett, J. Energy Storage., 2016, 8, 91-98. https://doi.org/10.1016/j.est.2016.10.003
  19. R.L. Borup, N.E. Vanderborgh, Mater Res Soc Symp Proc., 1995, 393, 151-155.
  20. S. Joseph, J. C, McClure, R. Chinelli, P. Pich, P. J Sebastian, Int. J. Hydro. Ener., 2005, 30(12), 1339-1344. https://doi.org/10.1016/j.ijhydene.2005.04.011
  21. Y. Wang, S. Zhang, Z. Lu, P. Wang, X. Ji, and W. Li, RSC Adv., 2018, 8(35), 19426-19431. https://doi.org/10.1039/C8RA02161A
  22. R. Yeetsorn, W. P. Ouajai, and K. Onyu, RSC Adv., 2020, 10(41), 24330-24342. https://doi.org/10.1039/d0ra00461h
  23. W. Liao, F. Jiang, Y. Zhang, X. Zhou, Z. He, Renew Energy., 2020, 152, 1310-1316. https://doi.org/10.1016/j.renene.2020.01.155