DOI QR코드

DOI QR Code

Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs

  • Ali, Zainab (Department of Mathematics, Govt. College University Faisalabad) ;
  • Khadimallah, Mohamed Amine (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Asghar, Sehar (Department of Mathematics, Govt. College University Faisalabad) ;
  • Al-Thobiani, Faisal (Marine Engineering Department, Faculty of Maritime Studie King Abdulaziz University) ;
  • Elbahar, Mohamed (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department) ;
  • Elimame, Elaloui (Laboratory of materials applications in environment, water and energy LR21ES15, Faculty of sciences, University of Gafsa) ;
  • Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2021.02.26
  • Accepted : 2021.07.06
  • Published : 2021.08.25

Abstract

In this paper, vibration characteristics of double-walled carbon nanotubes (CNTs) are studied based upon nonlocal elastic shell theory. The significance of small scale is being perceived by developing nonlocal Love shell model. The wave propagation approach has been utilized to frame the governing equations as eigen value system. The influence of nonlocal parameter subjected to diverse end supports has been overtly analyzed. An appropriate selection of material properties and nonlocal parameter has been considered. The influence of changing mechanical parameter Poisson's ratio has been investigated in detail. It is found that the frequencies decrease as nonlocal parameter increases and for the certain values of nonlocal parameter against range of Poisson ratio rise slowly with length double-walled CNTs. The dominance of boundary conditions via nonlocal parameter is shown graphically. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.

Keywords

Acknowledgement

This project was supported by the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University under the research project No 16794/01/2020

References

  1. Adela, I., (2018), Computational Fluid Dynamics: Basic Instruments and Applications in Science, BoD-Books on Demand, Norderstedt, Germany.
  2. Akbas S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. https://doi.org/10.1142/S021945541750033X.
  3. Akbas, S.D. (2016a), "Forced vibration analysis of viscoelastic nanobeams embedded in an elastic medium", Smart Struct. Syst., 18(6), 1125-1143. http://doi.org/10.12989/sss.2016.18.6.1125.
  4. Akbas, S.D. (2016b), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., 59(3), 579-599. http://doi.org/10.12989/sem.2016.59.3.579.
  5. Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009.
  6. Akbas, S.D. (2018a), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., 6(1), 39-55. http://doi.org/10.12989/anr.2018.6.1.039.
  7. Akbas, S.D. (2018b), "Bending of a cracked functionally graded nanobeam", Adv. Nano Res., 6(3), 219-243. http://doi.org/10.12989/anr.2018.6.3.219.
  8. Akbas, S.D. (2018c), "Forced vibration analysis of cracked nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 40(8), 1-11. https://doi.org/10.1007/s40430-018-1315-1.
  9. Akbas, S.D. (2019), "Axially forced vibration analysis of cracked a nanorod", J. Comput. Appl. Mech., 50(1), 63-68. https://doi.org/10.22059/jcamech.2019.281285.392.
  10. Akbas, S.D. (2020), "Modal analysis of viscoelastic nanorods under an axially harmonic load", Adv. Nano Res., 8(4), 277. http://doi.org/10.12989/anr.2020.8.4.277.
  11. Al-Shamma, F., Majeed, W.I. and Ali, H.A.K. (2001), "Experimental responses of MWCNTs reinforced cross-ply thin composite shells under transverse impact and thermal loads", J. Eng. Sustain. Develop., 22(3), 1-49. https://doi.org/10.31272/jeasd.2018.3.4.
  12. Amara, K., Tounsi, A., Mechab, I. and Adda-Bedia, E.A. (2010), "Nonlocal elasticity effect on column buckling of multiwalled carbon nanotubes under temperature field", Appl. Math. Model., 34(12), 3933-3942. https://doi.org/10.1016/j.apm.2010.03.029.
  13. Ansari, R., and Rouhi, H. (2013), "Nonlocal analytical Flugge shell model for the vibrations of double-walled carbon nanotubes with different end conditions", Int. J. Appl. Mech., 80, 021006-1. https://doi.org/10.1142/S179329201250018X.
  14. Ansari, R., Hemmatnezhad, M. and Rezapour, J. (2011), "The thermal effect on nonlinear oscillations of carbon nanotubes with arbitrary boundary conditions", Curr. Appl. Phys., 11(3), 692-697. https://doi.org/10.1016/j.cap.2010.11.034.
  15. Ansari, R. and Rouhi, H. (2012), "Nonlocal analytical Flugge shell model for the axial buckling of double-walled carbon nanotubes with different end conditions", Int. J. Nano, 7(3), 1250081. https://doi.org/10.1142/S179329201250018X.
  16. Ansari, R., Sahmani, S. and Arash, B. (2010), "Nonlocal plate model for free vibrations of single-layered graphene sheets", Phys. Lett. A, 375(1), 53-62. https://doi.org/10.1016/j.physleta.2010.10.028.
  17. Arefi, M., Mohammadi, M., Tabatabaeian, A., Dimitri, R. and Tornabene, F. (2018), "Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels", Steel Compos. Struct., 27(4), 525-536. https://doi.org/10.12989/scs.2018.27.4.525.
  18. Basirjafari, S., Esmaeilzadeh Khadem, S. and Malekfar, R. (2013), "Validation of shell theory for modeling the radial breathing mode of a single-walled carbon nanotube", Int. J. Eng. Trans. A, 26(4), 447-454.
  19. Benguediab, S., Tounsi, A., Ziadour, M. and Semmah, A. (2014), "Chirality and scale effects on mechanical and buckling properties of zigzag double-walled carbon nanotubes", Compos. Part B, 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020.
  20. Benmansour, D.L., Kaci, A., Bousahla, A.A., Heireche, H., Tounsi, A., Alwabli, A.S., Alhebshi, A.M., Al-ghmady, K., Mahmoud, S.R. (2019), "The nano scale bending and dynamic properties of isolated protein microtubules based on modified strain gradient theory", Adv. Nano Res., 7(6), 443. http://doi.org/10.12989/anr.2019.7.6.443.
  21. Bouadi, A., Bousahla, A.A., Houari, M.S.A., Heireche, H. and Tounsi, A. (2018), "A new nonlocal HSDT for analysis of stability of single layer graphene sheet", Adv. Nano Res., 6(2), 147-162. http://doi.org/10.12989/anr.2018.6.2.147.
  22. Brischotto, S. (2015), "A continuum shell model including van der Waals interaction for free vibrations of double-walled carbon nanotubes", Comput. Model. Eng. Sci., 104, 305-327. http://doi.org/10.3970/cmes.2015.104.305.
  23. Chen, Y., Zhao, H.B., Chen, Z.P., Grieger, I. and Kroplin, B.H. (1993), "Vibration of high speed rotating shells with calculations for cylindrical shells", J. Sound Vib., 160(1), 137-160. https://doi.org/10.1006/jsvi.1993.1010.
  24. Civalek, O. and Jalaei, M.H. (2020), "Buckling of carbon nanotube (CNT)-reinforced composite skew plates by the discrete singular convolution method", Acta Mech., 231(6), 2565-2587. https://doi.org/10.1006/jsvi.1993.1010.
  25. Do, Q.C., Pham, D.N., Vu, D.Q., Vu, T.T.A. and Nguyen, D.D. (2019), "Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load", Steel Compos. Struct., 31(3), 243-259. https://doi.org/10.12989/scs.2019.31.31.3.243.
  26. Duan, W.H., Wang, C.M. and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics", J. Appl. Phys., 101(2), 024305. https://doi.org/10.1063/1.2423140.
  27. Ebrahimi, F., Dabbagh, A., Rabczuk, T. and Tornabene, F. (2019), "Analysis of propagation characteristics of elastic waves in heterogeneous nanobeams employing a new two-step porositydependent homogenization scheme", Adv. Nano Res., 7(2), 135-143. https://doi.org/10.12989/anr.2019.7.2.135.
  28. Eltaher, M.A., Almalki, T.A., Ahmed, K.I. and Almitani, K.H. (2019), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. https://doi.org/10.12989/anr.2019.7.1.039.
  29. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
  30. Eringen, A.C. and Wegner, J.L. (2003), "Nonlocal continuum field theories", Appl. Mech. Rev., 56(2), B20-B22. https://doi.org/10.1115/1.1553434.
  31. Fakhrabadi, M.M.S., Rastgoo, A. and Ahmadian, M.T. (2015), "Application of electrostatically actuated carbon nanotubes in nanofluidic and bio-nanofluidic sensors and actuators", Measurement, 73, 127-136. https://doi.org/10.1016/j.measurement.2015.05.009.
  32. Flugge, W. (1962), Statik und Dynamik der Scahlen, Springer, Berlin, Germany.
  33. Flugge, W. (2013), Stresses in Shells, Springer Science & Business Media, Berlin, Germany.
  34. Forsberg, K. (1964), "Influence of boundary conditions on modal characteristics of cylindrical shells", J. Am. Inst. Aeronaut. Astronaut., 2(12), 2150-2157. https://doi.org/10.2514/3.55115.
  35. Fu, Y.M., Hong, J.W. and Wang, X.Q. (2006), "Analysis of nonlinear vibration for embedded carbon nanotubes", J. Sound Vib., 296(4-5), 746-756. https://doi.org/10.1016/j.jsv.2006.02.024.
  36. Hao, M.J., Guo, X.M. and Wang, Q. (2010), "Small-scale effect on torsional buckling of multi-walled carbon nanotubes", Eur. J. Mech. A Solid, 29(1), 49-55. https://doi.org/10.1016/j.euromechsol.2009.05.008.
  37. Hernandez, E., Goze, C., Bemier, P. and Rubio, A. (1998), "Elastic properties of C and BxCyNz composite nanotubes", Phys. Rev. Lett, 80(20), 4502. https://doi.org/10.1103/PhysRevLett.80.4502.
  38. Heydarpour, Y., Aghdam, M.M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. https://doi.org/10.1016/j.compstruct.2014.06.023.
  39. Hsu, J.C., Chang, R.P. and Chang, W.J. (2008), "Resonance frequency of chiral single-walled carbon nanotubes using Timoshenko beam theory", Phys. Lett. A, 372(16), 2757-2759. https://doi.org/10.1016/j.physleta.2008.01.007.
  40. Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", J. Mech. Phys. Solids, 56, 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010.
  41. Hussain, M. and Naeem, M.N. (2019a), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model, 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
  42. Hussain, M. and Naeem, M.N. (2019b), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
  43. Koochi, A. and Goharimanesh, M. (2021), "Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: The energy balance method", Rep. Mech. Eng., 2(1), 41-50. https://doi.org/10.31181/rme200102041g.
  44. Lam, K.Y., Loy, C.T. (1995) "Effects of boundary conditions on frequencies of a multi-layered cylindrical shell", J. Sound Vib., 188, 363-384. https://doi.org/10.1006/jsvi.1995.0599.
  45. Lei, Z. and Zhang, Y. (2018), "Characterizing buckling behavior of matrix-cracked hybrid plates containing CNTR-FG layers", Steel Compos. Struct., 28(4), 495-508. https://doi.org/10.12989/scs.2018.28.4.495.
  46. Moradi-Dastjerdi, R. and Payganeh, G. (2017), "Transient heat transfer analysis of functionally graded CNT reinforced cylinders with various boundary conditions", Steel Compos. Struct., 24, 359-367. https://doi.org/10.12989/scs.2017.24.3.359.
  47. Natsuki, T., Qing, Q.N. and Morinobu, E. (2007), "Wave propagation in single-walled and double-walled carbon nanotubes filled with fluids", J. Appl. Phys., 101(3), 034319. https://doi.org/10.1063/1.2432025.
  48. Ouakad, H.M. and Sedighi, H.M. (2016), "Rippling effect on the structural response of electrostatically actuated single-walled carbon nanotube based NEMS actuators", Int. J. Nonlinear Mech., 87, 97-108. https://doi.org/10.1016/j.ijnonlinmec.2016.09.009.
  49. Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312. https://doi.org/10.1016/S0020-7225(02)00210-0.
  50. Pradhan, S.C. and Phadikar, J.K. (2009), "Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models", Phys. Lett. A., 373(11), 1062-1069. https://doi.org/10.1016/j.physleta.2009.01.030.
  51. Qian, D., Wagner, G.J., Liu, W.K., Yu, M.F. and Ruoff, R.S. (2002), "Mechanics of carbon nanotubes", Appl. Mech. Rev., 55(6), 495-533. https://doi.org/10.1115/1.1490129.
  52. Rouhi, H., Ansari, R., Arash, B. (2013), "Vibration Analysis of double-walled carbon nanotubes based on the non-local donnell shell via a new numerical approach", Iran. J. Sci. Technol. B. 37, 91-105.
  53. Rouhi, H., Bazdid-Vahdati, M. and Ansari, R. (2015), "RayleighRits vibrational analysis of multi-walled carbon nanotubes based on the non-local Flugge shell theory", J. Compos., 750392. https://doi.org/10.1155/2015/750392.
  54. Rysaeva, L.K., Bachurin, D.V., Murzaev, R.T., Abdullina, D.U., Korznikova, E.A., Mulyukov, R.R. and Dmitriev, S.V. (2020), "Evolution of the carbon nanotube bundle structure under biaxial and shear strains", Facta Universitatis, Series: Mechanical Engineering, 18(4), 525-536. http://doi.org/10.22190/FUME201005043R
  55. Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. http://doi.org/10.12989/anr.2019.7.4.265
  56. Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A. and Ordejon, P. (1999), "Ab initio structural, elastic, and vibrational properties of carbon nanotubes", Phys. Rev. B, 59, 12678-12688. http://doi.org/10.1103/PhysRevB.59.12678.
  57. Sedighi, H.M. and Malikan, M. (2020), "Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment", Physica Scripta, 95(5), 055218. https://doi.org/10.1093/jcde/qwaa041.
  58. Sedighi, H.M., Ouakad, H.M., Dimitri, R. and Tornabene, F. (2020), "Stress-driven nonlocal elasticity for the instability analysis of fluid-conveying C-BN hybrid-nanotube in a magneto-thermal environment", Physica Scripta, 95(6), 065204. https://doi.org//10.1088/1402-4896/ab793f.
  59. Shafiei, H. and Setoodeh, A.R. (2017), "Nonlinear free vibration and post-buckling of FG-CNTRC beams on nonlinear foundation", Steel Compos. Struct., 24(1), 65-77. http://doi.org/10.12989/scs.2017.24.1.065.
  60. Shahsavari, D., Karami, B. and Janghorban, M. (2019), "Size-dependent vibration analysis of laminated composite plates", Adv. Nano Res., 7(5), 337-349. http://doi.org/10.12989/anr.2019.7.5.337.
  61. She, G.L., Ren, Y.R. and Yuan, F.G. (2019), "Hygro-thermal wave propagation in functionally graded double-layered nanotubes systems", Steel Compos. Struct., 31(6), 641-653. http://doi.org/10.12989/scs.2019.31.6.641.
  62. Shen, H.S. and Zhang, C.L. (2010), "Torsional buckling and post buckling of double-walled carbon nanotubes by nonlocal shear deformable shell model", Compos. Struct., 92(5), 1073-1084. https://doi.org/10.1016/j.compstruct.2009.10.002.
  63. Soldano, C. (2015), "Hybrid metal-based carbon nanotubes", "Novel platform for multifunctional applications", Prog. Mater. Sci., 69, 183-212. https://doi.org/10.1016/j.pmatsci.2014.11.001.
  64. Sosa, E.D., Darlington, T.K., Hanos, B.A. and O'Rourke, M.J.E. (2014), "Multifunctional thermally remendable nanocomposites", J. Comp., 705687. http://doi.org/10.1155/2014/705687.
  65. Sudak, L.J. (2003), "Column buckling of multi-walled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94, 7281-7287. https://doi.org/10.1063/1.1625437.
  66. Sun, C.T. and Zhang, H. (2002), "Size-dependent elastic moduli of plate like nanomaterials", J. Appl. Phys., 93, 212-1218. https://doi.org/10.1063/1.1530365.
  67. Sun, S., Cao, D. and Chu, S. (2013), "Free vibration analysis of thin rotating cylindrical shells using wave propagation approach", Arch. Appl. Mech., 83(4), 521-531. https://doi.org/10.1007/s00419-012-0701-x.
  68. Tahouneh, V. (2017), "Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate", Steel Compos. Struct., 25(6), 649-661. http://doi.org/10.12989/scs.2017.25.6.649.
  69. Usuki, T. and Yogo, K. (2009), "Beam equations for multi-walled carbon nanotubes derived from Flugge shell theory", Proceedings of Royal Society A., 465(2104), 1199-1226. https://doi.org/10.1098/rspa.2008.0394.
  70. Vodenitcharova, T. and Zhang, L.C. (2003), "Effective wall thickness of single walled carbon nanotubes", Phys. Rev. B., 68, 165401. https://doi.org/10.1103/PhysRevB.68.165401.
  71. Wang, C.Y. and Zhang, L.C. (2007), "Modelling the free vibration of single-walled carbon nanotubes", Proceedings of 5th Australasian Congress on Applied Mechanics, Brisbane, Australia, December.
  72. Wang, Q. Varadan, V.K. and Quek, S.T. (2006), "Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models", Phys. Lett. A, 357(2), 130-135. https://doi.org/10.1016/j.physleta.2006.04.026.
  73. Wang, Q., Zhou, G.Y. and Lin, K.C. (2006), "Scale effect on wave propagation of double-walled carbon nanotubes", Int. J. Solids. Struct., 43, 6071-6084. https://doi.org/10.1016/j.ijsolstr.2005.11.005.
  74. Warburton, G.B. (1965), "Vibration of thin cylindrical shells", J. Mech. Eng. Sci., 7(4), 399-407. https://doi.org/10.1243/JMES_JOUR-1965-007-062-02.
  75. Xiaobin, L., Shuangxi, X., Weiguo, W. and Jun, L. (2014), "An exact dynamic stiffness matrix for axially loaded double-beam systems", Sadhana, 39(3), 607-623. https://doi.org/10.1007/s12046-013-0214-5.
  76. Xu, K.U., Aifantis, E.C. and Yan, Y.H. (2008), "Vibrations of double-walled carbon nanotubes with different boundary conditions between inner and outer tubes", J. Appl. Mech., 75(2), 021013-1. https://doi.org/10.1115/1.2793133.
  77. Yakobson, B.I., Brabec, C.J. and Bernholc, J. (1996), "Nanomechanics of carbon tubes: Instabilities beyond linear response", Phys. Rev. Lett., 76, 2511-2514. https://doi.org/10.1103/PhysRevLett.76.2511.
  78. Yakobson, B.I., Campbell, M.P., Brabec, C.J. and Bemholc J. (1997), "High strain rate fracture and C-chain unravelling in carbon nanotubes", Comput. Mater. Sci., 8(4), 341-348. https://doi.org/10.1016/S0927-0256(97)00047-5.
  79. Yoon, J., Ru, C.Q. and Mioduchowski. A. (2003), "Vibration of an embedded multiwall carbon nanotube", Compos. Sci. Tech., 63(11), 1533-1542. https://doi.org/10.1016/S0266-3538(03)00058-7.
  80. Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21(1), 65-74. http://doi.org/10.12989/sss.2018.21.1.065.
  81. Zare, J., Shateri, A., Beni, Y.T. and Ahmadi, A. (2020), "Vibration analysis of shell-like curved carbon nanotubes using nonlocal strain gradient theory", Math. Method Appl. Sci. https://doi.org/10.1002/mma.6599.
  82. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. http://doi.org/10.12989/sem.2015.54.4.693.
  83. Zhang, Y.Y., Wang, C.M. and Tan, V.B.C. (2009), "Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech., 1(1), 89-106.