DOI QR코드

DOI QR Code

Interdiffusion Studies of βNiAl Bond Coats: Understanding the Zr, Pt, and Al Migration Trends and Their Beneficial Effects

  • Chandio, Ali Dad (Department of Metallurgical Engineering, NED University of Engineering and Technology) ;
  • Haque, Nafisul (Department of Metallurgical Engineering, NED University of Engineering and Technology) ;
  • Shaikh, Asif Ahmed (Department of Metallurgical Engineering, NED University of Engineering and Technology)
  • Received : 2021.05.05
  • Accepted : 2021.07.18
  • Published : 2021.08.27

Abstract

The oxidation resistance of the diffusion aluminide bond coat (BC) is compromised largely by interdiffusion (ID) effects on coated turbine blades of aeroengines. The present study is designed to understand the influence of ID on βNiAl coatings or BC. In this regard, nickel substrate and CMSX-4 superalloy are deposited. In total, four sets of BCs are developed, i.e. pure βNiAl (on Ni substrate), simple βNiAl (on CMSX-4 substrate), Zr-βNiAl (on CMSX-4 substrate) and Pt-βNiAl (on CMSX-4 substrate). The main aim of this study is to understand the interdiffusion of Al, Zr and Pt during preparation and oxidation. In addition, the beneficial effects of both Zr and platinum are assessed. Pure βNiAl and simple βNiAl show Ni-out-diffusion, whereas for platinum inward diffusion to the substrate is noticed under vacuum treatment. Interestingly, Zr-βNiAl shows the least ID in all BCs and exhibit stability under both vacuum and oxidation treatments. However, its spallation resistance is slightly lower than that of Pt-βNiAl BC. All BCs show similar oxide growth trends, except for Zr-βNiAl, which exhibits two-stage oxidations, i.e. transient and steady-state. Moreover, it is suggested that the localized spallation in all BCs is caused by βNiAl - γ'-Ni3Al transformation.

Keywords

References

  1. V. K. Tolpygo and D. R. Clarke, Acta Mater., 48, 3283 (2000). https://doi.org/10.1016/S1359-6454(00)00156-7
  2. J. Haynes, B. A. Pint, Y. Zhang and I. G. Wright, Surf. Coat. Technol., 202, 730 (2007). https://doi.org/10.1016/j.surfcoat.2007.06.039
  3. H. Tawancy, N. M. Abbas, T. N. Rhys-Jones, Surf. Coat. Technol., 49, 1 (1991). https://doi.org/10.1016/0257-8972(91)90022-O
  4. B. A. Pint, I. G. Wright, W. Y. Lee, Y. Zhang, K. Prubner and K. B. Alexander, Mater. Sci. Eng., A, 245, 201 (1998). https://doi.org/10.1016/S0921-5093(97)00851-4
  5. D. K. Das, Prog. Mater. Sci., 58, 151 (2013). https://doi.org/10.1016/j.pmatsci.2012.08.002
  6. J. Angenete and K. Stiller, Surf. Coat. Technol., 150, 107 (2002). https://doi.org/10.1016/S0257-8972(01)01544-4
  7. D. Wang, H. Peng, S. Gong and H. Guo, Corros. Sci., 78, 304 (2014). https://doi.org/10.1016/j.corsci.2013.10.013
  8. Z. Bai, L. Dongqing, P. Hui, W. Juan, G. Hongbo and G. Shengkai, Prog. Nat. Sci: Mater. Int., 22, 146 (2012). https://doi.org/10.1016/j.pnsc.2012.03.007
  9. E. Cavaletti, S. Naveos, S. Mercier, P. Josso, M. P. Bacos and D. Monceau, Surf. Coat. Technol., 204, 761 (2009). https://doi.org/10.1016/j.surfcoat.2009.09.072
  10. E. Cavaletti, S. Naveos, S. Mercier, P. Josso, M. P. Bacos and D. Monceaub, in 36th International Conference on Metallurgical Coatings and Thin Films, San Diego, USA (2009).
  11. P. Dai, Q. Wu, Y. Ma, S. Li and S. Gong, Appl. Surf. Sci., 271, 311 (2013). https://doi.org/10.1016/j.apsusc.2013.01.189
  12. J. R. H. Brian, G. Mark, B. Brett and D. Ram, Superalloys, p.753, The Minerals, Metals, and Materials Society (2008).
  13. V. Deodeshmukh, N. Mu, B. Li and B. Gleeson, Surf. Coat. Technol., 201, 3836 (2006). https://doi.org/10.1016/j.surfcoat.2006.07.250
  14. H. L. Du, J. Kipkemoi, D. N. Tsipas and P. K. Datta, Surf. Coat. Technol., 86-87, 1 (1996). https://doi.org/10.1016/S0257-8972(96)03027-7
  15. B. Pint, Surf. Coat. Technol., 188-189, 71 (2004). https://doi.org/10.1016/j.surfcoat.2004.08.007
  16. S. Hamadi, M. P. Bacos, M. Poulain, A. Seyeux, V. Maurice and P. Marcus, Surf. Coat. Technol., 204, 756 (2009). https://doi.org/10.1016/j.surfcoat.2009.09.073
  17. J. D. Kuenzly and D. L. Douglass, Oxid. Met., 8, 139 (1974). https://doi.org/10.1007/BF00612170
  18. J. G. Smeggil, Mater. Sci. Eng., 87, 261 (1987). https://doi.org/10.1016/0025-5416(87)90387-9
  19. D. J. Larson and M. K. Miller, Mater. Charact., 44, 159 (2000). https://doi.org/10.1016/S1044-5803(99)00049-2
  20. B. A. Pint, Oxid. Met, 45, 1 (1996). https://doi.org/10.1007/BF01046818
  21. C. C. Jia, K. Ishida and T. Nishizawa, Metall. Mater. Trans. A, 25, 473 (1994). https://doi.org/10.1007/BF02651589
  22. H. J. Grabke, Intermetallics, 7, 1153 (1999). https://doi.org/10.1016/S0966-9795(99)00037-0
  23. G. Lehnert and H. W. Meinhardt, Electrodeposition Surf. Treat., 1, 189 (1972/73). https://doi.org/10.1016/0300-9416(73)90013-8
  24. M. R. Jackson and J. R. Rairden, Metall. Mater. Trans. A, 8, 1697 (1977). https://doi.org/10.1007/BF02646872
  25. R. Streiff, O. Cerclier and D. H. Boone, Surf. Coat. Technol., 32, 111 (1987). https://doi.org/10.1016/0257-8972(87)90101-0
  26. G. W. Goward and D .H. Bone, Oxid. Met., 3, 475 (1971). https://doi.org/10.1007/BF00604047