DOI QR코드

DOI QR Code

A New Dual Connective Network Resource Allocation Scheme Using Two Bargaining Solution

이중 협상 해법을 이용한 새로운 다중 접속 네트워크에서 자원 할당 기법

  • Received : 2021.01.18
  • Accepted : 2021.03.03
  • Published : 2021.08.31

Abstract

In order to alleviate the limited resource problem and interference problem in cellular networks, the dual connectivity technology has been introduced with the cooperation of small cell base stations. In this paper, we design a new efficient and fair resource allocation scheme for the dual connectivity technology. Based on two different bargaining solutions - Generalizing Tempered Aspiration bargaining solution and Gupta and Livne bargaining solution, we develop a two-stage radio resource allocation method. At the first stage, radio resource is divided into two groups, such as real-time and non-real-time data services, by using the Generalizing Tempered Aspiration bargaining solution. At the second stage, the minimum request processing speeds for users in both groups are guaranteed by using the Gupta and Livne bargaining solution. These two-step approach can allocate the 5G radio resource sequentially while maximizing the network system performance. Finally, the performance evaluation confirms that the proposed scheme can get a better performance than other existing protocols in terms of overall system throughput, fairness, and communication failure rate according to an increase in service requests.

이중 연결 네트워크(Dual Connectivity Network)는 소몰 셀 기지국(SBS: Smallcell Base Station)의 제한된 자원 문제와 간섭 문제를 완화하기 위해 스몰 셀 기지국과 매크로 셀 기지국(MBS: Macrocell Base Station)이 협력하여 서비스를 지원하는 기술이다. 하지만 이중 연결 네트워크 역시 한정된 자원을 분배해주는 기술이기 때문에 자원 할당 방식은 매우 중요한 문제이다. 그래서 본 논문에서는 이중 연결 네트워크에서 효율적이고 공정한 자원할당을 위해 일반화된 강한 포부 협상 해법(GTABS: Generalizing Tempered Aspiration Bargaining Solution)과 굽타 리빈 협상 해법(GLBS:Gupta and Livne Bargaining Solution)을 이용한 두 단계 자원 분배 알고리즘을 제안한다. 단계 자원 분배 알고리즘은 다음과 같다. 첫 번째 단계인 그룹 자원 분배 알고리즘에서는 GTABS를 이용하여 각 기지국의 무선 자원을 실시간 그룹과 비 실시간 그룹에게 효율적으로 할당한다. 두 번째 단계인 사용자 자원 분배 알고리즘에서는 GLBS를 이용하여 각 그룹으로 나누어진 자원을 각 그룹의 사용자들에게 최적으로 할당한다. 이러한 두 단계 자원 분배 방식은 5G 무선 자원을 최적으로 할당하여 네트워크 시스템 성능 최대화와 사용자 만족도를 동시에 보장한다. 마지막으로 본 논문에서는 성능 평가를 통해 제안된 방식이 서비스 요청 증가에 따라 전체 시스템 처리량, 공정성, 통신 장애율 측면에서 비교 방식들 보다 모두 10% 이상의 효율성을 입증했다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 및 정보통신기획평가원의 대학 ICT연구센터 지원사업의 연구결과로 수행되었음(IITP-2020-2018-0-01799).

References

  1. F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, "Five disruptive technology directions for 5G," in IEEE Communications Magazine, Vol.52, No.2, pp.74-80, 2014. https://doi.org/10.1109/MCOM.2014.6736746
  2. J. G. Andrews et al., "What Will 5G Be?," in IEEE Journal on Selected Areas in Communications, Vol.32, No.6, pp.1065-1082, 2014. https://doi.org/10.1109/jsac.2014.2328098
  3. S. Xu and Y. Fu, "Resource allocation algorithm for maximizing network utility in LTE network with dual connectivity," 3rd IEEE International Conference on Computer and Communications (ICCC), pp.600-606, 2017.
  4. 3GPP Technical Report (TR) 36.872, "Small cell enhancements for EUTRA and E-UTRAN - Physical layer aspects," Tech. Rep., Decembe, available at www.3gpp.org, 2013.
  5. Z. Han, D. Niyato, W. Saad, T. Basar, and A. Hjrungnes, "Game theory in wireless and communication networks," Cambridge University Press, 2011.
  6. J. Nash, "Two-person cooperative games," Econometrica, Vol.21, No.1, pp.128, 1953. https://doi.org/10.2307/1906951
  7. K. Avrachenkov, J. Elias, F. Martignon, G. Neglia, and L. Petrosyan, "Cooperative network design: A Nash bargaining solution approach," Computer Networks, Vol.83, pp.265-279, 2015. https://doi.org/10.1016/j.comnet.2015.03.017
  8. K. Bairagi, N. H. Tran, W. Saad, Z. Han, and C. S. Hong, "A game-theoretic approach for fair coexistence between LTE-U and Wi-Fi systems," in IEEE Transactions on Vehicular Technology, Vol.68, No.1, pp.442-455, 2019. https://doi.org/10.1109/TVT.2018.2880789
  9. D. Kim, K. Lee, and J. Kim, "Nash bargaining approach for fair and efficient LTE-WiFi aggregation," in IEEE Access, Vol.7, pp.117176-117187, 2019. https://doi.org/10.1109/ACCESS.2019.2936857
  10. H. Houba, X. Tieman, and R. Brinksma, "The Nash- and Kalai-Smorodinsky bargaining solution for decision weight utility functions," Game Theory and Information 9611001, University Library of Munich, Germany, 1996.
  11. Y. Chun and W. Thomson, "Bargaining problems with claims," RCER Working Papers 189, University of Rochester - Center for Economic Research (RCER), 1989.
  12. E. Karagozoglu and K. Keskin, "A tale of two bargaining solutions," Games, MDPI, Open Access Journal, Vol.6, No.2, pp.1-14, 2015.
  13. E. Karagozoglu and K. Keskin, "Endogenous reference points in bargaining," Mathematical Methods of Operations Research, Vol.88, No.2, pp.283-295, 2018. https://doi.org/10.1007/s00186-018-0636-2
  14. S. Gupta and Z. A. Livne, "Resolving a conflict situation with a reference outcome: An axiomatic model," Management Science, Vol. 34, No.11, pp.1303-1314, 1988. https://doi.org/10.1287/mnsc.34.11.1303
  15. P. V. Balakrishnan, J. C. Gomez, and R. V. Vohra, "Bargaining problems with arbitrary reference points," 2011.
  16. S. Singh, M. Geraseminko, S. P. Yeh, N. Himayat, and S. Talwar, "Proportional fair traffic splitting and aggregation in heterogeneous wireless networks," IEEE Communications Letters, Vol.20, No.5, pp.1010-1013, 2016. https://doi.org/10.1109/LCOMM.2016.2547418
  17. H. Lee, S. Vahid, and K. Moessner, "Traffic-aware resource allocation with aggregation in heterogeneous networks with WLANs," European Conference on Networks and Communications (EuCNC), Ljubljana, Slovenia, pp.1-5, 2018.
  18. J. Liu, X. Tao, X. Zhou, and Q. Cui, "Utility based resource allocation algorithm with carrier aggregation on unlicensed band," Wireless and Optical Communication Conference (WOCC), Taipei, pp.180-184, 2015.
  19. 3GPP "NR; User Equipment (UE) radio access capapbilities," TS 38.306 V16.2.0, System Architecture for the 5G System (Release 16), 2020.
  20. R. Jain, W. Hawe, and D. Chiu, "A quantitative measure of fairness and discrimination for resource allocation in Shared Computer Systems," DEC-TR-301, 1984.
  21. A. S. Avestimehr and D. N. C. Tse, "Outage capacity of the fading relay channel in the low SNR regime," IEEE Transactions on Information Theory, Vol.53, No.4, pp.1401-1415, 2007. https://doi.org/10.1109/TIT.2007.892773