Acknowledgement
This study was supported by the Konyang University Research Fund in 2019, and partly by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through the Agri-Bio Industry Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) (Grant No. 316007-5).
References
- Thompson CA, DeLaForest A, Battle MA. 2018. Patterning the gastrointestinal epithelium to confer regional-specific functions. Dev. Biol. 435: 97-108. https://doi.org/10.1016/j.ydbio.2018.01.006
- Sumagin R, Parkos CA. 2015. Epithelial adhesion molecules and the regulation of intestinal homeostasis during neutrophil transepithelial migration. Tissue Barriers 3: e969100. https://doi.org/10.4161/21688362.2014.969100
- Canonici A, Siret C, Pellegrino E, Pontier-Bres R, Pouyet L, Montero MP, et al. 2011. Saccharomyces boulardii improves intestinal cell restitution through activation of the α2β1 integrin collagen receptor. PLoS One 6: e18427. https://doi.org/10.1371/journal.pone.0018427
- Kolachala VL, Bajaj R, Wang L, Yan Y, Ritzenthaler JD , Gewirtz AT, et al. 2007. Epithelial-derived fibronectin expression, signaling, and function in intestinal inflammation. J. Biol. Chem. 282: 32965-32973. https://doi.org/10.1074/jbc.M704388200
- Kopf A, Sixt M. 2019. Gut homeostasis: active migration of intestinal epithelial cells in tissue renewal. Curr. Biol. 29: R1091-R1093. https://doi.org/10.1016/j.cub.2019.08.068
- Walsh MF, Ampasala DR, Rishi AK, Basson MD. 2009. TGF-β1 modulates focal adhesion kinase expression in rat intestinal IEC-6 epithelial cells via stimulatory and inhibitory Smad binding elements. Biochim. Biophys. Acta. 1789: 88-98. https://doi.org/10.1016/j.bbagrm.2008.11.002
- Efstathiou JA, Pignatelli M. 1998. Modulation of epithelial cell adhesion in gastrointestinal homeostasis. Am. J. Pathol. 153: 341-347. https://doi.org/10.1016/S0002-9440(10)65576-9
- Desselberger U. Rotaviruses. 2014. Virus Res. 190: 75-96. https://doi.org/10.1016/j.virusres.2014.06.016
- Clark A, Black R, Tate J, Roose A, Kotloff K, Lam D, et. al. 2017. Estimating global, regional and national rotavirus deaths in children aged < 5 years: current approaches, new analyses and proposed improvements. PLoS One 12: e0183392. https://doi.org/10.1371/journal.pone.0183392
- Jiang V, Jiang B, Tate J, Parashar UD, Patel MM. 2010. Performance of rotavirus vaccines in developed and developing countries. Hum. Vaccin. 6: 532-542. https://doi.org/10.4161/hv.6.7.11278
- Rollo EE, Kumar KP, Reich NC, Cohen J, Angel J, Greenberg HB, et al. 1999. The epithelial cell response to rotavirus infection. J. Immunol. 163: 4442-4452.
- Lee J, Yoo YC. 2006. Determination of the minimal sequence of bovine lactoferricin responsible for apoptosis induction in THP-1 cells. Lab. Anim. Res. 22: 181-185.
- Kruzel ML, Zimecki M, Actor. JK. 2017. Lactoferrin in a context of inflammation-induced pathology. Front. Immunol. 6: 1438. https://doi.org/10.3389/fimmu.2017.01438
- Legrand D. 2016. Overview of lactoferrin as a natural immune modulator. J. Pediat. 173: S10-S15. https://doi.org/10.1016/j.jpeds.2016.02.071
- He J, Furmanski P. 1995. Sequence specificity and transcriptional activation in the binding of lactoferrin to DNA. Nature 373: 721-724. https://doi.org/10.1038/373721a0
- Furlund CB, Ulleberg EK, Devold TG, Flengsrud R, Jacobsen M, Sekse C, et al. 2013. Identification of lactoferrin peptides generated by digestion with human gastrointestinal enzymes. J. Dairy Sci. 96: 75-88. https://doi.org/10.3168/jds.2012-5946
- Miyauchi H, Kaino A, Shinoda I, Fukuwatari Y, Hayasawa H. 1997. Immunomodulatory effect of bovine lactoferrin pepsin hydrolysate on murine splenocytes and Peyer's Patch cells. J. Dairy Sci. 80: 2330-2339. https://doi.org/10.3168/jds.S0022-0302(97)76184-8
- Bellamy W, Takase M, Yamaguchi K, Wakabayashi H, Kawase K, Tomita M. 1992. Identification of the bactericidal domain of lactoferrin. Biochem. Biophys. Acta 1121: 130-136.
- Yamauchi K, Tomita M, Giehl TJ, Ellison RT. 1993. Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect. Immun. 61: 719-728. https://doi.org/10.1128/iai.61.2.719-728.1993
- Yang H, Oh KH, Kim HJ, Cho YH, Yoo YC. 2018. Ginsenoside-Rb2 and 20(S)-Ginsenoside-Rg3 from Korean red ginseng prevent rotavirus infection in newborn mice. J. Microbiol. Biotechnol. 28: 391-396. https://doi.org/10.4014/jmb.1801.01006
- Yoo YC, Watanabe R, Koike Y, Mitobe M, Shimazaki K, Watanabe S, et al. 1997. Apoptosis in human leukemic cells induced by lactoferricin, a bovine milk protein-derived peptide: involvement of reactive oxygen species. Biochem. Biophys. Res. Commun. 237: 624-628. https://doi.org/10.1006/bbrc.1997.7199
- Sato K, Yoo YC, Mochizuki M, Saiki I, Takahashi T, Azuma I. 1995. Inhibition of tumor-induced angiogenesis by a synthetic lipid A analogue with low endotoxicity, DT-5461. JPN. J. Cancer Res. 86: 374-382. https://doi.org/10.1111/j.1349-7006.1995.tb03067.x
- Ray RM, Viar MJ, McCormack SA, Johnson LR. 2001. Focal adhesion kinase signaling is decreased in polyamine-depleted IEC-6 cells. Am. J. Physiol. Cell Physiol. 281: C475-C485. https://doi.org/10.1152/ajpcell.2001.281.2.C475
- Timer J, Chen YQ, Liu B, Bazaz R, Tayor JD, Honn, KV. 1992. The lipoxygenase metabolite 12(S)-hete promotes αllbβ3integrin-mediated tumor-cell spreading on fibronectin. Int. J. Cancer 52: 594-603. https://doi.org/10.1002/ijc.2910520418
- Fukushima A, Yoo YC, Yoshomatsu K, Matsuzawa K, Tamura M, Tono-oka S, et al. 1996. Effect of MDP-Lys(L18) as a mucosal immunoadjuvant on protection of mucosal infections by Sendai virus and rotavirus. Vaccine 14: 485-491. https://doi.org/10.1016/0264-410X(95)00236-T
- Chen J, Zhang R, Wang J, Yu P, Liu Q, Zeng D, et al. 2015. Protective effects of baicalin on LPS-induced injury in intestinal epithelial cells and intercellular tight junctions. Can. J. Physiol. Pharmacol. 93: 233-237. https://doi.org/10.1139/cjpp-2014-0262
- Ouko L, Ziegler TR, Gu LH, Eisenberg LM, Yang VW. 2004. Wnt11 signaling promotes proliferation, transformation, and migration of IEC6 intestinal epithelial cells. J. Biol. Chem. 279: 26707-26715. https://doi.org/10.1074/jbc.M402877200
- Pearce SC, Coia HD, Karl JP, Pantoja-Feliciano IG, Zachos NC, Racicot K. 2018. Intestinal in vitro and ex vivo models to study host-microbiome interactions and acute stressors. Front. Physiol. 9: 1584. https://doi.org/10.3389/fphys.2018.01584
- Santos MF, Viar MJ, McCormack S A, Johnson JR. 1997. Polyamines are important for attachment of IEC-6 cells to extracellular matrix. Am. J. Physiol. 273: 175-183.
- Vllasaliu D, Falcone FH, Stolnik S, garnett M. 2014. Basement membrane influences intestinal epithelialcell growth and presents a barrier to the movementof macromolecules. Exp. Cell Res. 323: 218-231. https://doi.org/10.1016/j.yexcr.2014.02.022
- Teller IC, Beaulieu JH. 2001. Interactions between laminin and epithelial cells in intestinal health and disease. Expert. Rev. Mol. Med. 3: 1-18. https://doi.org/10.1017/S1462399401003623
- Chang RM, Wen LQ, Chang JX, Fu YR , Jiang ZP, ChenS. 2013. Repair of damaged intestinal mucosa in a mouse model of sepsis. World J. Emerg. Med. 4: 223-228. https://doi.org/10.5847/wjem.j.issn.1920-8642.2013.03.012
- DevedecSEL, Geverts B, Bont H, Yan K, Verbeek FJ, Houtsmuller AB, et al. 2012. The residence time of focal adhesion kinase (FAK) and paxillin at focal adhesions in renal epithelial cells is determined by adhesion size, strength and life cycle status. J. Cell Sci. 125: 4498-4506. https://doi.org/10.1242/jcs.104273
- Yoo YC, Lee J, Park SR, Nam KY, Cho YH, Choi JE. 2013. Protective effect of ginsenoside-Rb2 from Korean red ginseng on the lethal infection haemagglutinating virus of Japan in mice. J. Ginseng Res. 37: 80-86. https://doi.org/10.5142/jgr.2013.37.80