과제정보
This research was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry (IPET) through the Agro and Livestock Products Safety Flow Management Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) [Grant No. 119077-2] and the Basic Science Research Program through the National Research Foundation of Korea (NRF) by the Ministry of Education [Grant No. NRF-2020R1A6A3A13072744].
참고문헌
- Tremmel M, Gerdtham U, Nilsson PM, Saha S. 2017. Economic burden of obesity: a systematic literature review. Int. J. Environ. Res. Public Health 14: 435. https://doi.org/10.3390/ijerph14040435
- Kopelman PG. 2000. Obesity as a medical problem. Nature 404: 635-643. https://doi.org/10.1038/35007508
- Ghoorah K, Campbell P, Kent A, Maznyczka A, Kunadian V. 2016. Obesity and cardiovascular outcomes: a review. Eur. Heart J. Acute Cardiovasc. Care 5: 77-85. https://doi.org/10.1177/2048872614523349
- Charlton M. 2009. Obesity, hyperlipidemia, and metabolic syndrome. Liver Transplant. 15: S83-S89.
- Castro A, Macedo-de la Concha L, Pantoja-Melendez C. 2017. Low-grade inflammation and its relation to obesity and chronic degenerative diseases. Rev. Med. Hosp. Gen. Mex. 80: 101-105.
- Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112: 1821-1830. https://doi.org/10.1172/JCI200319451
- Monteiro R, Azevedo I. 2010. Chronic inflammation in obesity and the metabolic syndrome. Mediators Inflamm. 2010: 289645. https://doi.org/10.1155/2010/289645
- Wellen KE, Hotamisligil GS. 2003. Obesity-induced inflammatory changes in adipose tissue. J. Clin. Invest. 112: 1785-1788. https://doi.org/10.1172/JCI20514
- Shah A, Mehta N, Reilly MP. 2008. Adipose inflammation, insulin resistance, and cardiovascular disease. J. Parenter. Enteral Nutr. 32: 638-644. https://doi.org/10.1177/0148607108325251
- Suganami T, Nishida J, Ogawa Y. 2005. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor α. Arterioscler. Thromb. Vasc. Biol. 25: 2062-2068. https://doi.org/10.1161/01.ATV.0000183883.72263.13
- Nishimura S, Manabe I, Nagai R. 2009. Adipose tissue inflammation in obesity and metabolic syndrome. Discov. Med. 8: 55-60.
- Abedi F, Razavi BM, Hosseinzadeh H. 2020. A review on gentisic acid as a plant derived phenolic acid and metabolite of aspirin: comprehensive pharmacology, toxicology, and some pharmaceutical aspects. Phytother. Res. 34: 729-741. https://doi.org/10.1002/ptr.6573
- Russell WR, Labat A, Scobbie L, Duncan GJ, Duthie GG. 2009. Phenolic acid content of fruits commonly consumed and locally produced in Scotland. Food Chem. 115: 100-104. https://doi.org/10.1016/j.foodchem.2008.11.086
- Onyeneho SN, Hettiarachchy NS. 1992. Antioxidant activity of durum wheat bran. J. Agric. Food Chem. 40: 1496-1500. https://doi.org/10.1021/jf00021a005
- Lubaina A and K Murugan. 2012. Biochemical characterization of oxidative burst during interaction between sesame (Sesamum indicum L.) in response to Alternaria sesami, pp. 243-250. Prospects in Bioscience: Addressing the Issues, Springer, India.
- Soleas GJ, Dam J, Carey M, Goldberg DM. 1997. Toward the fingerprinting of wines: cultivar-related patterns of polyphenolic constituents in Ontario wines. J. Agric. Food Chem. 45: 3871-3880. https://doi.org/10.1021/jf970183h
- Hsieh H, Ju Y. 2018. Medicinal components in Termitomyces mushrooms. Appl. Microbiol. Biotechnol. 102: 4987-4994. https://doi.org/10.1007/s00253-018-8991-8
- Palacios I, Lozano M, Moro C, D'arrigo M, Rostagno M, Martinez J, et al. 2011. Antioxidant properties of phenolic compounds occurring in edible mushrooms. Food Chem. 128: 674-678. https://doi.org/10.1016/j.foodchem.2011.03.085
- Awtry EH, Loscalzo J. 2000. Aspirin. Circulation 101: 1206-1218. https://doi.org/10.1161/01.CIR.101.10.1206
- Li H, Lee H, Kim S, Moon B, Lee C. 2014. Antioxidant and anti-inflammatory activities of methanol extracts of Tremella fuciformis and its major phenolic acids. J. Food Sci. 79: C460-C468.
- Sharma S, Khan N, Sultana S. 2004. Study on prevention of two-stage skin carcinogenesis by Hibiscus rosa sinensis extract and the role of its chemical constituent, gentisic acid, in the inhibition of tumour promotion response and oxidative stress in mice. Eur. J. Cancer Prev. 13: 53-63. https://doi.org/10.1097/00008469-200402000-00009
- Peskin AV, Winterbourn CC. 2000. A microtiter plate assay for superoxide dismutase using a water-soluble tetrazolium salt (WST-1). Clin. Chim. Acta 293: 157-166. https://doi.org/10.1016/S0009-8981(99)00246-6
- Giustarini D, Rossi R, Milzani A, Dalle-Donne I. 2008. Nitrite and nitrate measurement by Griess reagent in human plasma: evaluation of interferences and standardization. Methods Enzymol. 440: 361-380. https://doi.org/10.1016/S0076-6879(07)00823-3
- Chait A, den Hartigh LJ. 2020. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front. Cardiovasc. Med. 7: 22. https://doi.org/10.3389/fcvm.2020.00022
- Clancy RM, Abramson SB. 1995. Nitric oxide: a novel mediator of inflammation. Proc. Soc. Exp. Biol. Med. 210: 93-101. https://doi.org/10.3181/00379727-210-43927AA
- Murakami A, Ohigashi H. 2007. Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int. J. Cancer 121: 2357-2363. https://doi.org/10.1002/ijc.23161
- Kawahara K, Hohjoh H, Inazumi T, Tsuchiya S, Sugimoto Y. 2015. Prostaglandin E2-induced inflammation: relevance of prostaglandin E receptors. Biochim. Biophys. Acta Mol. Cell. Biol. Lipids 1851: 414-421.
- Al-Sadi R, Ye D, Boivin M, Guo S, Hashimi M, Ereifej L, Ma TY. 2014. Interleukin-6 modulation of intestinal epithelial tight junction permeability is mediated by JNK pathway activation of claudin-2 gene. PLoS One 9: e85345. https://doi.org/10.1371/journal.pone.0085345
- Hirao LA, Grishina I, Bourry O, Hu WK, Somrit M, Sankaran-Walters S, et al. 2014. Early mucosal sensing of SIV infection by paneth cells induces IL-1β production and initiates gut epithelial disruption. PLoS Pathog. 10: e1004311. https://doi.org/10.1371/journal.ppat.1004311
- Al-Sadi R, Guo S, Ye D, Ma TY. 2013. TNF-α modulation of intestinal epithelial tight junction barrier is regulated by ERK1/2 activation of Elk-1. Am. J. Pathol. 183: 1871-1884. https://doi.org/10.1016/j.ajpath.2013.09.001
- Liu T, Zhang L, Joo D, Sun S. 2017. NF-κB signaling in inflammation. Signal. Transduct. Target. Ther. 2: 17023. https://doi.org/10.1038/sigtrans.2017.23
- Karin M. 1999. How NF-κB is activated: the role of the IκB kinase (IKK) complex. Oncogene 18: 6867-6874. https://doi.org/10.1038/sj.onc.1203219
- Christian F, Smith EL, Carmody RJ. 2016. The regulation of NF-κB subunits by phosphorylation. Cells 5: 12. https://doi.org/10.3390/cells5010012
- Kaminska B. 2005. MAPK signalling pathways as molecular targets for anti-inflammatory therapy-from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta 1754: 253-262. https://doi.org/10.1016/j.bbapap.2005.08.017
- Kim EK, Choi E. 2010. Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta 1802: 396-405. https://doi.org/10.1016/j.bbadis.2009.12.009
- Coskun M, Olsen J, Seidelin JB, Nielsen OH. 2011. MAP kinases in inflammatory bowel disease. Clin. Chim. Acta 412: 513-520. https://doi.org/10.1016/j.cca.2010.12.020
- Ali AT, Hochfeld WE, Myburgh R, Pepper MS. 2013. Adipocyte and adipogenesis. Eur. J. Cell Biol. 92: 229-236. https://doi.org/10.1016/j.ejcb.2013.06.001
- Kowalska K, Olejnik A, Rychlik J, Grajek W. 2015. Cranberries (Oxycoccus quadripetalus) inhibit lipid metabolism and modulate leptin and adiponectin secretion in 3T3-L1 adipocytes. Food Chem. 185: 383-388. https://doi.org/10.1016/j.foodchem.2015.03.152
- Eberle D, Hegarty B, Bossard P, Ferre P, Foufelle F. 2004. SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86: 839-848. https://doi.org/10.1016/j.biochi.2004.09.018
- Chirala SS, Wakil SJ. 2004. Structure and function of animal fatty acid synthase. Lipids 39: 1045-1053. https://doi.org/10.1007/s11745-004-1329-9
- Yu W, Chen Z, Zhang J, Zhang L, Ke H, Huang L, et al. 2008. Critical role of phosphoinositide 3-kinase cascade in adipogenesis of human mesenchymal stem cells. Mol. Cell. Biochem. 310: 11-18. https://doi.org/10.1007/s11010-007-9661-9
- Zhang HH, Huang J, Duvel K, Boback B, Wu S, Squillace RM, et al. 2009. Insulin stimulates adipogenesis through the Akt-TSC2-mTORC1 pathway. PLoS One 4: e6189. https://doi.org/10.1371/journal.pone.0006189
- Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A. 2009. Adipogenesis and WNT signalling. Trends Endocrinol. Metab. 20: 16-24. https://doi.org/10.1016/j.tem.2008.09.002
- Liu J, Farmer SR. 2004. Regulating the balance between peroxisome proliferator-activated receptor gamma and beta-catenin signaling during adipogenesis. A glycogen synthase kinase 3beta phosphorylation-defective mutant of beta-catenin inhibits expression of a subset of adipogenic genes. J. Biol. Chem. 279: 45020-45027. https://doi.org/10.1074/jbc.M407050200
- Hsieh C, Chou M, Wang C. 2017. Lunasin attenuates obesity-related inflammation in RAW264. 7 cells and 3T3-L1 adipocytes by inhibiting inflammatory cytokine production. PLoS One 12: e0171969. https://doi.org/10.1371/journal.pone.0171969