Acknowledgement
This study was supported by the National Research Foundation of Korea (NRF) grant No. NRF-2019R1A2C1088967, funded by the Korean government of the Republic of Korea.
References
- Ramsay RR, Albreht A. 2018. Kinetics, mechanism, and inhibition of monoamine oxidase. J. Neural. Transm. 125: 1659-1683. https://doi.org/10.1007/s00702-018-1861-9
- Carradori S, D'Ascenzio M, Chimenti P, Secci D, Bolasco A. 2014. Selective MAO-B inhibitors: a lesson from natural products. Mol. Divers. 18: 216-243.
- Youdim MB, Edmondson D, Tipton KF. 2006. The therapeutic potential of monoamine oxidase inhibitors. Nat. Rev. Neurosci. 7: 295-309. https://doi.org/10.1038/nrn1883
- Johnston JP. 1968. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem. Pharmacol. 7: 1285-1297. https://doi.org/10.1016/0006-2952(68)90066-X
- Schedin-Weiss S, Inoue M, Hromadkova L, Teranishi Y, Yamamoto NG, Wiehager B, et al. 2017. Monoamine oxidase B is elevated in Alzheimer disease neurons, is associated with γ-secretase and regulates neuronal amyloid β-peptide levels. Alzheimers. Res. Ther. 9: 57. https://doi.org/10.1186/s13195-017-0279-1
- Tripathi RKP, Ayyannan SR. 2019. Monoamine oxidase-B inhibitors as potential neurotherapeutic agents: an overview and update. Med. Res. Rev. 39: 1603-1706. https://doi.org/10.1002/med.21561
- Guglielmi P, Carradori S, Ammazzalorso A, Secci D. 2019. Novel approaches to the discovery of selective human monoamine oxidase-B inhibitors: is there room for improvement? Expert Opin. Drug Discov. 14: 995-1035. https://doi.org/10.1080/17460441.2019.1637415
- Chavarria D, Fernandes C, Silva V, Silva C, Gil-Martins E, Soares P, et al. 2019. Design of novel monoamine oxidase-B inhibitors based on piperine scaffold: structure-activity-toxicity, drug-likeness and efflux transport studies. Eur. J. Med. Chem. 16: 111770.
- Subaraja M, Vanisree AJ. 2019. The novel phytocomponent asiaticoside-D isolated from Centella asiatica exhibits monoamine oxidase-B inhibiting potential in the rotenone degenerated cerebral ganglions of Lumbricus terrestris. Phytomedicine 58: 152833. https://doi.org/10.1016/j.phymed.2019.152833
- Anand P, Singh B. 2013. A review on cholinesterase inhibitors for Alzheimer's disease. Arch. Pharm. Res. 36: 375-399. https://doi.org/10.1007/s12272-013-0036-3
- Kandiah N, Pai MC, Senanarong V, Looi L, Ampil E, Park KW, et al. 2017. Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson's disease dementia. Clin. Interv. Aging 12: 697-707. https://doi.org/10.2147/CIA.S129145
- Ibrahim MM, Gabr MT. 2019. Multitarget therapeutic strategies for Alzheimer's disease. Neural. Regen. Res. 14: 437-440. https://doi.org/10.4103/1673-5374.245463
- Ramsay RR, Tipton KF. 2017. Assessment of enzyme inhibition: a review with examples from the development of monoamine oxidase and cholinesterase inhibitory drugs. Molecules 22: E1192.
- Mathew B, Parambi DGT, Mathew GE, Uddin MS, Inasu ST, Kim H, et al. 2019. Emerging therapeutic potentials of dual-acting MAO and AChE inhibitors in Alzheimer's and Parkinson's diseases. Arch. Pharm. 352: e1900177.
- Ghosh AK, Osswald HL. 2014. Bace1 (ss-secretase) inhibitors for the treatment of Alzheimer's disease. Chem. Soc. Rev. 43: 1039/e3cs60460h
- Baird-Lambert J, Davis PA, Kaylor KM. 1982. Methylaplysinopsin: a natural product of marine origin with effects on serotonergic neurotransmission. Clin. Exp. Pharmacol. Physiol. 9: 203-212. https://doi.org/10.1111/j.1440-1681.1982.tb00798.x
- Lee HW, Choi H, Nam SJ, Fenical W, Kim H. 2017. Potent inhibition of monoamine oxidase B by a piloquinone from marine-derived Streptomyces sp. CNQ-027. Int. J. Microbiol. Biotechnol. 27: 785-790. https://doi.org/10.4014/jmb.1612.12025
- Lee HW, Jung WK, Kim HJ, Jeong YS, Nam SJ, Kang H, et al. 2015. Inhibition of monoamine oxidase by anithiactins from Streptomyces sp. J. Microbiol. Biotechnol. 25: 1425-1428. https://doi.org/10.4014/jmb.1505.05020
- Jeong GS, Kang MG, Han SZ, Noh JI, Park JE, Nam SJ, et al. 2021. Selective inhibition of human monoamine oxidase B by 5-hydroxy-2-methyl-chroman-4-one isolated from an endogenous lichen fungus Daldinia fissa. J. Fungi. 7: 84. https://doi.org/10.3390/jof7020084
- Hong A, Tu LC, Yang I, Lim KM, Nam SJ. 2020. Marine natural products with monoamine oxidase (MAO) inhibitory activity. Pharm. Biol. 58: 716-720. https://doi.org/10.1080/13880209.2020.1790618
- Baek SC, Park MH, Ryu HW, Lee JP, Kang MG, Park D, et al. 2019. Rhamnocitrin isolated from Prunus padus var. seoulensis: a potent and selective reversible inhibitor of human monoamine oxidase A. Bioorg. Chem. 83: 317-325. https://doi.org/10.1016/j.bioorg.2018.10.051
- Baek SC, Lee HW, Ryu HW, Kang MG, Park D, Kim SH, et al. 2018. Selective inhibition of monoamine oxidase A by hispidol. Bioorg. Med. Chem. Lett. 28: 584-588. https://doi.org/10.1016/j.bmcl.2018.01.049
- Baek SC, Choi B, Nam SJ, Kim H. 2018. Inhibition of monoamine oxidase A and B by demethoxycurcumin and bisdemethoxycurcumin. J. Appl. Biol. Chem. 61: 187-190 https://doi.org/10.3839/jabc.2018.027
- Baek SC, Ryu HW, Kang MG, Lee H, Park D, Cho ML, et al. 2018. Selective inhibition of monoamine oxidase A by chelerythrine, an isoquinoline alkaloid. Bioorg. Med. Chem. Lett. 28: 2403-2407. https://doi.org/10.1016/j.bmcl.2018.06.023
- Ellman GL, Courtney KD, Andres Jr V, Feather-Stone RM, 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
- Lee HW, Ryu HW, Kang MG, Park D, Oh SR, Kim H. 2016. Potent selective monoamine oxidase B inhibition by maackiain, a pterocarpan from the roots of Sophora flavescens. Bioorg. Med. Chem. Lett. 26: 4714-4719. https://doi.org/10.1016/j.bmcl.2016.08.044
- Lee JP, Kang MG, Lee JY, Oh JM, Baek SC, Leem HH, Park D, Cho ML,Kim H, 2019.Potent inhibition of acetylcholinesterase by sargachromanol I from Sargassum siliquastrum and by selected natural compounds. Bioorg. Chem. 89: 103043. https://doi.org/10.1016/j.bioorg.2019.103043
- Jeong GS, Kang MG, Lee JY, Lee SR, Park D, Cho ML, et al. 2020. Inhibition of butyrylcholinesterase and human monoamine oxidase-B by the coumarin glycyrol and liquiritigenin isolated from Glycyrrhiza uralensis. Molecules 25: 3896. https://doi.org/10.3390/molecules25173896
- Wilson EN, Carmo SD, lulite MF, Hall H, Ducatenzeiler A, Marks AR, et al. 2017. BACE1 inhibition by microdose lithium formulation NP03 rescues memory loss and early stage amyloid neuropathology. Transl. Psychiatry 7: e1190. https://doi.org/10.1038/tp.2017.169
- Qiu D, Zhou M, Lin T, Chen J , Wang G, Huang Y, et al. 2019. Cytotoxic components from hypericum elodeoides targeting RXRα and inducing HeLa cell apoptosis through caspase-8 activation and PARP cleavage. J. Nat. Prod. 82: 1072-1080. https://doi.org/10.1021/acs.jnatprod.8b00680
- Liu H, Zhu G, Zhao S, Fu P, Zhu W. 2019. Bioactive natural products from the marine sponge-derived Nocardiopsis dassonvillei OUCMDZ-4534. Chin. J. Org. Chem. 39: 507-514. https://doi.org/10.6023/cjoc201806045
- Singh R, Chandrashekharappa S, Vemula PK, Haribabu B, Jala VR. 2020. Microbial metabolite urolithin B Inhibits recombinant human monoamine oxidase A enzyme. Metabolites 10: 258. https://doi.org/10.3390/metabo10060258
- Lee HW, Kim YJ, Nam SJ, Kim H. 2017. Potent selective inhibition of monoamine oxidase A by alternariol monomethyl ether isolated from Alternaria brassicae. J. Microbiol. Biotechnol. 27: 316-320. https://doi.org/10.4014/jmb.1610.10053