과제정보
This study was supported by a grant from Chosun University (2021).
참고문헌
- van Bloois E, Winter RT, Kolmar H, Fraaije MW. 2011. Decorating microbes: surface display of proteins on Escherichia coli. Trends Biotechnol. 29: 79-86. https://doi.org/10.1016/j.tibtech.2010.11.003
- Lee SY, Choi JH, Xu Z. 2003. Microbial cell-surface display. Trends Biotechnol. 21: 45-52. https://doi.org/10.1016/S0167-7799(02)00006-9
- Rutherford N, Mourez M. 2006. Surface display of proteins by gram-negative bacterial autotransporters. Microb. Cell Fact. 5: 22. https://doi.org/10.1186/1475-2859-5-22
- Nicolay T, Vanderleyden J, Spaepen S. 2015. Autotransporter-based cell surface display in Gram-negative bacteria. Crit. Rev. Microbiol. 41: 109-123. https://doi.org/10.3109/1040841X.2013.804032
- Jose J, Bernhardt R, Hannemann F. 2002. Cellular surface display of dimeric Adx and whole cell P450-mediated steroid synthesis on E. coli. J. Biotechnol. 95: 257-268. https://doi.org/10.1016/S0168-1656(02)00030-5
- Jose J, von Schwichow S. 2004. Autodisplay of active sorbitol dehydrogenase (SDH) yields a whole cell biocatalyst for the synthesis of rare sugars. Chembiochem. 5: 491-499. https://doi.org/10.1002/cbic.200300774
- Bielen A, Teparic R, Vujaklija D, Mrsa V. 2014. Microbial anchoring systems for cell-surface display of lipolytic enzymes. Food Technol. Biotechnol. 52: 16.
- Bayer EA, Belaich JP, Shoham Y, Lamed R. 2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu. Rev. Microbiol. 58: 521-554. https://doi.org/10.1146/annurev.micro.57.030502.091022
- Chauvaux S, Beguin P, Aubert JP, Bhat KM, Gow LA, Wood TM, et al. 1990. Calcium-binding affinity and calcium-enhanced activity of Clostridium thermocellum endoglucanase D. Biochem. J. 265: 261-265. https://doi.org/10.1042/bj2650261
- Choi SK, Ljungdahl LG. 1996. Structural role of calcium for the organization of the cellulosome of Clostridium thermocellum. Biochemistry 35: 4906-4910. https://doi.org/10.1021/bi9524631
- Fierobe HP, Mechaly A, Tardif C, Belaich A, Lamed R, Shoham Y, et al. 2001. Design and production of active cellulosome chimeras. Selective incorporation of dockerin-containing enzymes into defined functional complexes. J. Biol. Chem. 276: 21257-21261. https://doi.org/10.1074/jbc.M102082200
- Pages S, Belaich A, Fierobe HP, Tardif C, Gaudin C, Belaich JP. 1999. Sequence analysis of scaffolding protein CipC and ORFXp, a new cohesin-containing protein in Clostridium cellulolyticum: comparison of various cohesin domains and subcellular localization of ORFXp. J. Bacteriol. 181: 1801-1810. https://doi.org/10.1128/JB.181.6.1801-1810.1999
- Pages S, Belaich A, Tardif C, Reverbel-Leroy C, Gaudin C, Belaich JP. 1996. Interaction between the endoglucanase CelA and the scaffolding protein CipC of the Clostridium cellulolyticum cellulosome. J. Bacteriol. 178: 2279-2286. https://doi.org/10.1128/jb.178.8.2279-2286.1996
- Sakka K, Sugihara Y, Jindou S, Sakka M, Inagaki M, Sakka K, et al. 2011. Analysis of cohesin-dockerin interactions using mutant dockerin proteins. FEMS Microbiol. Lett. 314: 75-80. https://doi.org/10.1111/j.1574-6968.2010.02146.x
- Salama-Alber O, Jobby MK, Chitayat S, Smith SP, White BA, Shimon LJW, et al. 2013. Atypical cohesin-dockerin complex responsible for cell surface attachment of cellulosomal components: binding fidelity, promiscuity, and structural buttresses. J. Biol. Chem. 288: 16827-16838. https://doi.org/10.1074/jbc.M113.466672
- Voronov-Goldman M, Lamed R, Noach I, Borovok I, Kwiat M, Rosenheck S, et al. 2011. Noncellulosomal cohesin from the hyperthermophilic archaeon Archaeoglobus fulgidus. Proteins 79: 50-60. https://doi.org/10.1002/prot.22857
- Ko HJ, Park E, Song J, Yang TH, Lee HJ, Kim KH, et al. 2012. Functional cell surface display and controlled secretion of diverse Agarolytic enzymes by Escherichia coli with a novel ligation-independent cloning vector based on the autotransporter YfaL. Appl. Environ. Microbiol. 78: 3051-3058. https://doi.org/10.1128/AEM.07004-11
- Chung CT, Niemela SL, Miller RH. 1989. One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc. Natl. Acad. Sci. USA 86: 2172-2175. https://doi.org/10.1073/pnas.86.7.2172
- Ekborg NA, Taylor LE, Longmire AG, Henrissat B, Weiner RM, Hutcheson SW. 2006. Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40. Appl. Environ. Microbiol. 72: 3396-3405. https://doi.org/10.1128/AEM.72.5.3396-3405.2006
- Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, et al. 2002. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99: 7877-7882. https://doi.org/10.1073/pnas.082243699
- Ha SC, Lee S, Lee J, Kim HT, Ko HJ, Kim KH, et al. 2011. Crystal structure of a key enzyme in the agarolytic pathway, α-neoagarobiose hydrolase from Saccharophagus degradans 2-40. Biochem. Biophys. Res. Commun. 412: 238-244. https://doi.org/10.1016/j.bbrc.2011.07.073
- Nelson MD, Fitch DH. 2011. Overlap extension PCR: an efficient method for transgene construction. Methods Mol. Biol. 772: 459-470. https://doi.org/10.1007/978-1-61779-228-1_27
- Lee J, Kim SH. 2009. High-throughput T7 LIC vector for introducing C-terminal poly-histidine tags with variable lengths without extra sequences. Protein Expr. Purif. 63: 58-61. https://doi.org/10.1016/j.pep.2008.09.005
- Duckworth M, Yaphe W. 1970. Thin-layer chromatographic analysis of enzymic hydrolysates of agar. J. Chromatogr. 49: 482-487. https://doi.org/10.1016/S0021-9673(00)93663-X
- Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671-675. https://doi.org/10.1038/nmeth.2089
- Haimovitz R, Barak Y, Morag E, Voronov-Goldman M, Shoham Y, Lamed R, et al. 2008. Cohesin-dockerin microarray: Diverse specificities between two complementary families of interacting protein modules. Proteomics 8: 968-979. https://doi.org/10.1002/pmic.200700486
- Arai R, Ueda H, Kitayama A, Kamiya N, Nagamune T. 2001. Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng. 14: 529-532. https://doi.org/10.1093/protein/14.8.529
- Caspi J, Barak Y, Haimovitz R, Irwin D, Lamed R, Wilson DB, et al. 2009. Effect of linker length and dockerin position on conversion of a Thermobifida fusca endoglucanase to the cellulosomal mode. Appl. Environ. Microbiol. 75: 7335-7342. https://doi.org/10.1128/AEM.01241-09
- Wu CH, Mulchandani A, Chen W. 2008. Versatile microbial surface-display for environmental remediation and biofuels production. Trends Microbiol. 16: 181-188. https://doi.org/10.1016/j.tim.2008.01.003
- Leo JC, Grin I, Linke D. 2012. Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Philos. Trans. R Soc. Lond B Biol. Sci. 367: 1088-1101. https://doi.org/10.1098/rstb.2011.0208
- Zarschler K, Janesch B, Kainz B, Ristl R, Messner P, Schaffer C. 2010. Cell surface display of chimeric glycoproteins via the S-layer of Paenibacillus alvei. Carbohydr. Res. 345: 1422-1431. https://doi.org/10.1016/j.carres.2010.04.010
- Liew PX, Wang CL, Wong SL. 2012. Functional characterization and localization of a Bacillus subtilis sortase and its substrate and use of this sortase system to covalently anchor a heterologous protein to the B. subtilis cell wall for surface display. J. Bacteriol. 194: 161-175. https://doi.org/10.1128/JB.05711-11
- Bello-Gil D, Maestro B, Fonseca J, Feliu JM, Climent V, Sanz JM. 2014. Specific and reversible immobilization of proteins tagged to the affinity polypeptide C-LytA on functionalized graphite electrodes. PLoS One 9: e87995. https://doi.org/10.1371/journal.pone.0087995
- Loimaranta V, Hytonen J, Pulliainen AT, Sharma A, Tenovuo J, Stromberg N, et al. 2009. Leucine-rich repeats of bacterial surface proteins serve as common pattern recognition motifs of human scavenger receptor gp340. J. Biol. Chem. 284: 18614-18623. https://doi.org/10.1074/jbc.M900581200
- Berlec A, Zadravec P, Jevnikar Z, Strukelj B. 2011. Identification of candidate carrier proteins for surface display on Lactococcus lactis by theoretical and experimental analyses of the surface proteome. Appl. Environ. Microbiol. 77: 1292-1300. https://doi.org/10.1128/AEM.02102-10
- Karpol A, Kantorovich L, Demishtein A, Barak Y, Morag E, Lamed R, et al. 2009. Engineering a reversible, high-affinity system for efficient protein purification based on the cohesin-dockerin interaction. J. Mol. Recognit. 22: 91-98. https://doi.org/10.1002/jmr.926