Acknowledgement
We acknowledge Shanghai Majorbio Bio-pharm Technology Co. Ltd., for their technical assistance with sequencing. We would like to thank Editage (www.editage.cn) for English language editing. This work was supported by the Applied Basic Research Frontier Foundation of Wuhan, China (2020020601012265), Major Technological Innovation Project of Hubei Province, China (2019ABA114), Natural Science Foundation of Hubei Province, China (2019CFB588), and Special Funds for Local Science and Technology Development Guided by Central government of China (2019ZYYD030).
References
- Rubin EM. 2008. Genomics of cellulosic biofuels. Nature 454: 841-845. https://doi.org/10.1038/nature07190
- Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, et al. 2007. Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315: 804-807. https://doi.org/10.1126/science.1137016
- Lemos LN, Pereira RV, Quaggio RB, Martins LF, Moura LMS, da Silva AR, et al. 2017. Genome-centric analysis of a thermophilic and cellulolytic bacterial consortium derived from composting. Front. Microbiol. 8: 644.
- Zhang D, Wang Y, Zhang C, Zheng D, Guo P, Cui Z. 2018. Characterization of a thermophilic lignocellulose-degrading microbial consortium with high extracellular xylanase activity. J. Microbiol. Biotechnol. 28: 305-313. https://doi.org/10.4014/jmb.1709.09036
- Batista-Garcia RA, del Rayo Sanchez-Carbente M, Talia P, Jackson SA, O'Leary N D, Dobson AD, et al. 2016. From lignocellulosic metagenomes to lignocellulolytic genes: trends, challenges and future prospects. Biofuels Bioprod. Bioref. 10: 864-882. https://doi.org/10.1002/bbb.1709
- Yang C, Xia Y, Qu H, Li AD, Liu RH, Wang YB, et al. 2016. Discovery of new cellulases from the metagenome by a metagenomics-guided strategy. Biotechnol. Biofuels 9: 138. https://doi.org/10.1186/s13068-016-0557-3
- Wierzbicka-Wos A, Henneberger R, Batista-Garcia RA, Martinez-Avila L, Jackson SA, Kennedy J, et al. 2019. Biochemical characterization of a novel monospecific endo-β-1, 4-glucanase belonging to GH family 5 from a rhizosphere metagenomic library. Front. Microbiol. 10: 1342. https://doi.org/10.3389/fmicb.2019.01342
- Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490-D495. https://doi.org/10.1093/nar/gkt1178
- Bredon M, Dittmer J, Noel C, Moumen B, Bouchon D. 2018. Lignocellulose degradation at the holobiont level: teamwork in a keystone soil invertebrate. Microbiome 6: 162. https://doi.org/10.1186/s40168-018-0536-y
- Oh HN, Lee TK, Park JW, No JH, Kim D, Sul WJ. 2017. Metagenomic SMRT sequencing-based exploration of novel lignocellulosedegrading capability in wood detritus from Torreya nucifera in Bija forest on Jeju Island. J. Microbiol. Biotechnol. 27: 1670-1680. https://doi.org/10.4014/jmb.1705.05008
- Stolze Y, Zakrzewski M, Maus I, Eikmeyer F, Jaenicke S, Rottmann N, et al. 2015. Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions. Biotechnol. Biofuels 8: 14. https://doi.org/10.1186/s13068-014-0193-8
- Jimenez DJ, Dini-Andreote F, DeAngelis KM, Singer SW, Salles JF, van Elsas JD. 2017. Ecological insights into the dynamics of plant biomass-degrading microbial consortia. Trends Microbiol. 25: 788-796. https://doi.org/10.1016/j.tim.2017.05.012
- Morris JJ, Lenski RE, Zinser ER. 2012. The Black Queen Hypothesis: evolution of dependencies through adaptive gene loss. mBio. 3: e00036-12.
- Guo P, Zhu W, Wang H, Lu Y, Wang X, Zheng D, Cui ZJ. 2010. Functional characteristics and diversity of a novel lignocelluloses degrading composite microbial system with high xylanase activity. J. Microbiol. Biotechnol. 20: 254-264. https://doi.org/10.4014/jmb.0906.06035
- Soest PJ. 1963. Use of detergents in the analysis of fibrous feeds. A rapid method for the determination of fiber and lignin. Assoc. Off. Anal. Chem. J. 49: 546-551.
- Noguchi H, Park J, Takagi T. 2006. Takagi T. MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res. 34: 5623-5630. https://doi.org/10.1093/nar/gkl723
- Fu L, Niu B, Zhu Z, Wu S, Li, W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28: 3150-3152. https://doi.org/10.1093/bioinformatics/bts565
- Peng Y, Leung H, Yiu SM, Chin F. 2012. Idba-ud: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28: 1420-1428. https://doi.org/10.1093/bioinformatics/bts174
- Altschul SF, Madden T L, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. https://doi.org/10.1093/nar/25.17.3389
- Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490-D495. https://doi.org/10.1093/nar/gkt1178
- Huang L, Zhang H, Wu P, Entwistle S, Li X, Yohe T, et al. 2018. Dbcan-seq: a database of carbohydrate-active enzyme (cazyme) sequence and annotation. Nucleic Acids Res. 46: D516-D521.
- Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. 2009. Circos: an information aesthetic for comparative genomics. Genome Res. 19: 1639-1645. https://doi.org/10.1101/gr.092759.109
- Wang C, Dong D, Wang HS, Muller K, Qin Y, Wang HL, et al. 2016. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition. Biotechnol. Biofuels 9: 22. https://doi.org/10.1186/s13068-016-0440-2
- Zhu N, Yang J, Ji L, Liu J, Yang Y, Yuan, H. 2016. Metagenomic and metaproteomic analyses of a corn stover-adapted microbial consortium emsd5 reveal its taxonomic and enzymatic basis for degrading lignocellulose. Biotechnol. Biofuels 9: 243. https://doi.org/10.1186/s13068-016-0658-z
- Zhang D, Wang Y, Zheng D, Guo P, Cheng W, Cui Z. 2016. New combination of xylanolytic bacteria isolated from the lignocellulose degradation microbial consortium xdc-2 with enhanced xylanase activity. Bioresour. Technol. 221: 686-690. https://doi.org/10.1016/j.biortech.2016.09.087
- Wilson DB. 2011. Microbial diversity of cellulose hydrolysis. Curr. Opin. Microbiol. 14: 259-263. https://doi.org/10.1016/j.mib.2011.04.004
- Koeck DE, Pechtl A, Zverlov VV, Schwarz WH. 2014. Genomics of cellulolytic bacteria. Curr. Opin. Biotechnol. 29: 171-183. https://doi.org/10.1016/j.copbio.2014.07.002
- van Zyl WH, Lynd LR, den Haan R, McBride JE. 2007. Consolidated bioprocessing for bioethanol production using Saccharomyces cerevisiae. Adv. Biochem. Eng. Biotechnol. 108: 205-235.
- Scheller HV, Ulvskov P. 2010. Hemicelluloses. Annu. Rev. Plant Biol. 61: 263-289. https://doi.org/10.1146/annurev-arplant-042809-112315
- Ye S, Kim JW, Kim SR. 2019. Metabolic engineering for improved fermentation of L-arabinose. J. Microbiol. Biotechnol. 29: 339-346. https://doi.org/10.4014/jmb.1812.12015
- Girio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R. 2010. Hemicelluloses for fuel ethanol: a review. 101: 4775-4800. https://doi.org/10.1016/j.biortech.2010.01.088
- Dam P, Kataeva I, Yang SJ, Zhou FF, Yin YB, Chou WC, et al. 2011. Insights into plant biomass conversion from the genome of the anaerobic thermophilic bacterium Caldicellulosiruptor bescii DSM 6725. Nucleic Acids Res. 39: 3240-3254. https://doi.org/10.1093/nar/gkq1281