과제정보
This work was supported by the Basic Science Research Program (grant code:NRF20201AC1009017), administered through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning, KOREA.
참고문헌
- Lee JW, Oliveira MT, Jang HB, Lee S, Chi DY, Kim DW, Song CE. Hydrogen-bond promoted nucleophilic fluorination: concept, mechanism and applications in positron emission tomography. Chem Soc Rev 2016;45:4638-4650. https://doi.org/10.1039/C6CS00286B
- Campbell MG, Ritter T. Modern carbon-fluorine bond forming reactions for aryl fluoride synthesis. Chem Rev 2015;115:612-633. https://doi.org/10.1021/cr500366b
- Jadhav VH, Jang SH, Jeong HJ, Lim ST, Sohn MH, Chi DY, Kim DW. Polymer-supported pentaethylene glycol as a facile heterogeneous catalyst for nucleophilic fluorination. Org Lett 2010;12:3740-3743. https://doi.org/10.1021/ol101485n
- Kim DW, Jeong HJ, Lim ST, Sohn MH. Tetrabutylammonium tetra(tert-butyl alcohol)-coordinated fluoride as a facile fluoride source. Angew Chem 2008;120:8532-8534. https://doi.org/10.1002/ange.200803150
- Carvalho NF, Pliego JR. Theoretical design and calculation of a crown ether phase-transfer-catalyst scaffold for nucleophilic fluorination merging two catalytic concepts. J Org Chem 2016;81:8455-8463. https://doi.org/10.1021/acs.joc.6b01624
- Kim DW, Chi DY. Polymer-supported ionic liquids: imidazolium salts as catalysts for nucleophilic substitution reactions including fluorinations. Angew Chem Int Ed 2004;43:483-485. https://doi.org/10.1002/anie.200352760
- Pilcher AS, Ammon HL, DeShong P. Utilization of tetrabutylammonium triphenylsilyldifluoride as a fluoride source for nucleophilic fluorination. J Am Chem Soc 1995;117:5166-5167. https://doi.org/10.1021/ja00123a025
- Km DW, Song CE, Chi DY. New method of fluorination using potassium fluoride in ionic liquid: significantly enhanced reactivity of fluoride and improved selectivity. J Am Chem Soc 2002;124:10278-10279. https://doi.org/10.1021/ja026242b
- Jadhav VH, Kim JG, Park SH, Kim DW. Task-specific hexaethylene glycol bridged di-cationic ionic liquids as catalysts for nucleophilic fluorination using potassium fluoride. Chem Eng J 2017;308:664-668. https://doi.org/10.1016/j.cej.2016.09.118
- Kim DW, Hong DJ, Jang KS, Chi DY. Structural modification of polymer-supported ionic liquids as catalysts for nucleophilic substitution reactions including fluorination. Adv Synth Catal 2006;348:1719-1727. https://doi.org/10.1002/adsc.200606119
- Joseph R, Rao CP. Ion and molecular recognition by lower rim 1,3-di-conjugates of calix[4]arene as receptors. Chem Rev 2011;111:4658-4702. https://doi.org/10.1021/cr1004524
- Bohmer V. Calixarenes, macrocycles with (almost) unlimited possibilities. Angew Chem Int Ed Engl 1995;34:713-745. https://doi.org/10.1002/anie.199507131
- Scheerder J, Duynhoven JPM, Engbersen JFJ, Reinhoudt DN. Solubilization of NaX salts in chloroform by bifunctional receptors. Angew Chem Int Ed Engl 1996;35:1090-1093. https://doi.org/10.1002/anie.199610901
- Sisson AL, Shah MR, Bhosale S, Matile S. Synthetic ion channels and pores(2004-2005). Chem Soc Rev 2006;35:1269-1286. https://doi.org/10.1039/B512423A
- Sessler JL, Kim SK, Gross DE, Lee CH, Kim JS, Lynch VM. Crown-6-calix[4]arene-capped calix[4]pyrrole: an ion-pair receptor for solvent-separated CsF ions. J Am Chem Soc 2008;130:13162-13166. https://doi.org/10.1021/ja804976f
- Sessler JL, Gross DE, Cho WS, Lynch VM, Schmidtchen FP, Bates GW, Light ME, Gale PA. Calix[4]pyrrole as a chloride anion receptor: solvent and counteraction effects. J Am Chem Soc 2006;128:12281-12288. https://doi.org/10.1021/ja064012h
- Casnati A, Barboso S, Rouquette H, Schwing-Weill M-J, Arnaud-Neu F, Dozol J-F, Ungaro R. New efficient calixarene amide ionophores for the selective removal of strontium ion from nuclear waste: synthesis, complexation, and extraction properties. J Am Chem Soc 2001;123:12182-12190. https://doi.org/10.1021/ja016597f
- Dondoni A, Marra A. Calixarene and calixresorcarene glycosides: their synthesis and biological applications. Chem Rev 2010;110:4949-4977. https://doi.org/10.1021/cr100027b
- Sameni S, Jeunesse C, Matt D, Harrowfield J. Calix[4]arene daisychains. Chem Soc Rev 2009;38:2117-2146. https://doi.org/10.1039/b900183b
- Kim DW, Ahn D-S, Oh Y-H, Lee S, Kil HS, Oh SJ, Lee SJ, Kim JS, Ryu JS, Moon DH, Chi DY. A new class of SN2 reactions catalyzed by protic solvents: facile fluorination for isotopic labeling of diagnostic molecules. J Am Chem Soc 2006;128:16394-16397. https://doi.org/10.1021/ja0646895
- Jadhav VH, Choi W, Lee S-S, Lee S, Kim DW. Bis-tert-alcohol-functionalized crown-6-calix[4]arene: an organic promoter for nucleophilic fluorination. Chem Eur J 2016;22:4515-4520. https://doi.org/10.1002/chem.201504602
- O'Hagan D, Deng H. Enzymatic fluorination and biotechnological developments of the fluorinase. Chem Rev 2015;115:634-649. https://doi.org/10.1021/cr500209t
- Han HJ, Lee S-S, Kang SM, Kim Y, Park C, Yoo S, Kim CH, Oh Y-H, Lee S, Kim DW. The effects of structural modifications of bis-tert-alcohol-functionalized crown-calix[4]arenes as nucleophilic fluorination promotors and relations with computational predictions. Eur J Org Chem 2020;2020:728-735. https://doi.org/10.1002/ejoc.201901746
- Engle KM, Pfeifer L, Pidgeon GW, Giuffredi GT, Thompson AL, Paton RS, Brown JM, Gouverneur V. Coordination diversity in hydrogen-bonded homoleptic fluoride-alcohol complexes modulates reactivity. Chem Sci 2015;6:5293-5302. https://doi.org/10.1039/C5SC01812A
- Zechel DL, Reid SP, Nashiru O, Mayer C, Stoll D, Jakeman DL, Warren AJ, Withers SG. Enzymatic synthesis of carbon-fluorine bonds. J Am Chem Soc 2001;123:4350-4351. https://doi.org/10.1021/ja005855q
- Kang SM, Kim CH, Lee KC, Kim DW. Bis-triethylene glycolic crown-5-calix[4]arene: a promoter of nucleophilic fluorination using potassium fluoride. Org Lett 2019;21:3062-3066. https://doi.org/10.1021/acs.orglett.9b00649
- Greaves TL, Drummond CJ. Protic ionic liquids: properties and applications. Chem Rev 2008;108:206-237. https://doi.org/10.1021/cr068040u
- Wasserscheid P, Keim W. Ionic liquids-new "solutions" for transition metal catalysis. Angew Chem Int Ed 2000;39:3772-3789. https://doi.org/10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
- Yang F, Guo H, Jiao Z, Li C, Ye J. Calixarene ionic liquids: excellent phase transfer catalysts for nucleophilic substitution reaction in water. J Iran Chem Soc 2012;9:327-332 https://doi.org/10.1007/s13738-011-0027-6