DOI QR코드

DOI QR Code

Organometallic fluorine-18 bonds in 18F-radiochemistry

  • Joong-Hyun Chun (Department of Nuclear Medicine, Yonsei University College of Medicine) ;
  • Minju Lee (Department of Nuclear Medicine, Yonsei University College of Medicine) ;
  • Sungwon Jun (Department of Nuclear Medicine, Yonsei University College of Medicine) ;
  • Jeongmin Son (Department of Nuclear Medicine, Severance Hospital, Yonsei University Health System)
  • 투고 : 2021.06.07
  • 심사 : 2021.06.28
  • 발행 : 2021.06.30

초록

Fluorine-18 is by far the most widely exploited radionuclide in PET (positron emission tomography) radiochemistry. The physical half-life of fluorine-18 allows for chemical manipulation within a restricted timeframe, and cyclotron-produced fluoride ion has been widely applied in aliphatic and aromatic nucleophilic radiofluorinations to produce a variety of established radiotracers. Radiotracers have become more structurally complicated to address diverse targets in physiobiological systems. There is therefore an unmet need to complement traditional C-18F bond-forming radiofluorination with new and efficient radiolabeling techniques to tackle the myriad of possible chemical environments. This review discusses recent advances in organometallic fluorine-18 bond creation in 18F-radiochemistry. Although not widely employed, new radiolabeling strategies for constructing boron-18F, silicon-18F, aluminum-18F, and other metal-18F bonds are described in view of their potential use in the development of novel radiopharmaceuticals.

키워드

과제정보

이 논문은 한국연구재단의 재원으로 마련한 개인연구사업(NRF-2019R1F1A1058774)의 지원을 받아 수행되었으며, 이권에 대한 문제를 일으킬 수 있는 상업적인 관련성은 없음을 밝힙니다.

참고문헌

  1. (a) Gillis EP, Eastman KJ, Hill MD, Donnelly DJ, Meanwell NA. Applications of fluorine in medicinal chemistry. J Med Chem. 2015; 58: 8315-8359. https://doi.org/10.1021/acs.jmedchem.5b00258
  2. (b) Purser S, Moore PR, Swallowb S, Gouverneur V. Fluorine in medicinal chemistry. Chem Soc Rev, 2008; 37: 320-330. https://doi.org/10.1039/B610213C
  3. (c) Hagmannm WK. The many roles for fluorine in medicinal chemistry. J Med Chem. 2008; 51: 4359-4369. https://doi.org/10.1021/jm800219f
  4. (d) Liang T, Neumann CN, Ritter T. Introduction of fluorine and fluorine-containing functional groups. Angew Chem Int Ed 2013; 52: 8214-8264. https://doi.org/10.1002/anie.201206566
  5. Kwon Y-D, Chun J-H. Recent progress in aromatic radiofluorination. J Radiopharm Mol Probes. 2019;5:145-151.
  6. (a) Jacobson O, Kiesewetter DO, Chen X. Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjugate Chem 2015; 26: 1-18. https://doi.org/10.1021/bc500475e
  7. (b) Miller PW, Long NJ, Vilar R, Gee AD. Synthesis of 11C, 18F, 15O, and 13N radiolabels for positron emission tomography. Angew Chem Int Ed 2008; 47: 8998-9033. https://doi.org/10.1002/anie.200800222
  8. (c) Cai L, Lu S, Pike VW. Chemistry with [18F]fluoride ion. Eur J Org Chem 2008: 2853-2873.
  9. (d) Tredwell M, Gouverneur V. 18F Labeling of arenes. Angew Chem Int Ed 2012; 51: 11426-11437. https://doi.org/10.1002/anie.201204687
  10. (a) Schirrmacher R, Wangler B, Bailey J,Bernard-Gauthier V, Schirrmacher E, Wangler C. Small prosthetic groups in 18F-radiochemistry: Useful auxiliaries for the design of 18F-PET tracers. Semin Nucl Med 2017; 47: 474-492. https://doi.org/10.1053/j.semnuclmed.2017.07.001
  11. (b) van der Born D, Pees A, Poot AJ, Orru RVA, Windhorst AD, Vugts DJ. Fluorine-18 labelled building blocks for PET tracer synthesis. Chem Soc Rev 2017; 46: 4709-4773. https://doi.org/10.1039/C6CS00492J
  12. (a) Brooks AF, Topczewski JJ, Ichiishi N, Sanford MS, Scott PJH. Late-stage [18F]fluorination: new solutions to old problems. Chem Sci 2014; 5: 4545-4553. https://doi.org/10.1039/C4SC02099E
  13. (b) Krull J, Heinrich MR. [18F]Fluorine-labeled pharmaceuticals: Direct aromatic fluorination compared to multi-step strategies. Asian J Org Chem 2019; 8: 576-590. https://doi.org/10.1002/ajoc.201800494
  14. (c) Deng X, Rong J, Wang L, Vasdev N, Zhang L, Josephson L, Liang SH. Chemistry for positron emission tomography: Recent advances in 11C-, 18F-, 13N-, and 15O-labeling reactions. Angew Chem Int Ed 2019; 58: 2580-2605. https://doi.org/10.1002/anie.201805501
  15. (d) Szpera R, Moseley DFJ, Smith LB, Sterling AJ, Gouverneur V. The fluorination of C-H bonds: Developments and perspectives. Angew Chem Int Ed 2019; 58: 14824-14848. https://doi.org/10.1002/anie.201814457
  16. Hamacher K, H. H. Coenen HH, Stocklin G. Efficient stereospecific synthesis of no-carrier-added 2-[18F]-Fluoro-2-Deoxy-D-Glucose using aminopolyether supported nucleophilic substitution.. J Nucl Med 1986; 27:235-238.
  17. (a) Jadha VH, Choi W, Lee SS, Lee S, Kim DW. Bis-tertalcohol-functionalized crown-6-calix[4]arene: An organic promoter for nucleophilic fluorination Chem Eur J 2016; 22: 4515-4520. https://doi.org/10.1002/chem.201504602
  18. (b) 2016 Lee JW, Oliveira MT, Jang HB, Lee S, Chi DY, Kim DW, Song CE. Hydrogen-bond promoted nucleophilic fluorination: concept, mechanism and applications in positron emission tomography Chem Soc Rev 2016; 45: 4683-4650.
  19. (c) Kim DW. Bioorthogonal click chemistry for fluorine-18 labeling protocols under physiologically friendly reaction condition J Fluorin Chem 2015; 174: 142-417. https://doi.org/10.1016/j.jfluchem.2014.11.009
  20. Kuchar M, Mamat C. Methods to Increase the metabolic stability of 18F-radiotracers. Molecules 2015; 20: 16186-16220. https://doi.org/10.3390/molecules200916186
  21. Lennox AJJ, Lloyd-Jones GC. Selection of boron reagents for Suzuki-Miyaura coupling. Chem Soc Rev 2014; 43: 412-443. https://doi.org/10.1039/C3CS60197H
  22. (a) Burke BP, Clemente GS, Archibald SJ. Boron-18F containing positron emission tomography radiotracers: advances and opportunities. Contrast Media Mol. Imaging 2015; 10: 96-110. https://doi.org/10.1002/cmmi.1615
  23. (b) Wilson TC, Cailly T, Gouverneur V. Boron reagents for divergent radiochemistry. Chem Soc Rev 2018; 47: 6990-7005. https://doi.org/10.1039/C8CS00499D
  24. (a) Molander GA. Organotrifluoroborates: Another branch of the mighty oak. J Org Chem 2015; 80: 7837-7848. https://doi.org/10.1021/acs.joc.5b00981
  25. (b) Perrin DM. [18F]-Organotrifluoroborates as radioprosthetic groups for PET imaging: From design principles to preclinical applications. Acc Chem Res 2016; 49: 1333-1343. https://doi.org/10.1021/acs.accounts.5b00398
  26. Ting R, Adam MJ, Ruth TR, Perrin DM. Arylfluoroborates and alkylfluorosilicates as potential PET imaging agents: High-yielding aqueous biomolecular 18F-labeling. J Am. Chem Soc 2005; 127: 13094-13095. https://doi.org/10.1021/ja053293a
  27. Ting R, Harwig C, Auf dem Keller U, McCormick S, Austin P, Overall CM, Adam MJ, Ruth TJ, Perrin DM. Toward [18F]-labeled aryltrifluoroborate radiotracers: In vivo positron emission tomography imaging of stable aryltrifluoroborate clearance in mice. J Am Chem Soc 2008; 130: 12045-12055. https://doi.org/10.1021/ja802734t
  28. Li Y, Liu Z, Harwig CW, Pourghiasian M, Lau J, Lin K-S, Schaffer P, Benard F, Perrin DM. 18F-click labeling of a bombesin antagonist with an alkyne-18F-ArBF3-: in vivo PET imaging of tumors expressing the GRP-receptor. Am J Nucl Med Mol Imaging 2013; 3: 57-70.
  29. Li Z, Chansaenpak K, Liu S, Wade CR, Peter S. Conti PS, Gabbai FP. Harvesting 18F-fluoride ions in water via direct 18F-19F isotopic exchange: radiofluorination of zwitterionic aryltrifluoroborates and in vivo stability studies. Med Chem Commun 2012; 3: 1305-1308. https://doi.org/10.1039/c2md20105d
  30. (a) Loudet A, Burgess K. BODIPY Dyes and their derivatives: Syntheses and spectroscopic properties. Chem Rev 2007; 107: 4891-4932. https://doi.org/10.1021/cr078381n
  31. (b) Boens N, Verbelen B, Ortiz MJ, Jiao L, Dehaen W. Synthesis of BODIPY dyes through postfunctionalization of the boron dipyrromethene core. Coord Chem Rev 2019; 399: 213024.
  32. (c) Kwon Y-D, Byun Y, Kim H-K. 18F-labelled BODIPY dye as a dual imaging agent: Radiofluorination and applications in PET and optical imaging Nucl Med Biol 2021; 93: 22-36. https://doi.org/10.1016/j.nucmedbio.2020.11.004
  33. (a) Li Z, Lin T-P, Liu S, Huang C-W, Hudnall TW, Gabbai FP, Conti PS. Rapid aqueous [18F]-labeling of a bodipy dye for positron emission tomography/fluorescence dual modality imaging. Chem Commun 2011; 47: 9324-9326. https://doi.org/10.1039/c1cc13089g
  34. (b) Hendricks JA, Keliher EJ, Wan D, Hilderbrand SA, Weissleder R, Mazitschek R. Synthesis of [18F]BODIPY: bifunctional reporter for hybrid optical/positron emission tomography imaging. Angew Chem Int Ed 2012; 51: 4603-4606. https://doi.org/10.1002/anie.201107957
  35. (a) Keliher EJ, Klubnick JA, Reiner T, Mazitschek R, Weissleder R. Efficient acid-catalyzed 18F/19F fluoride exchange of BODIPY dyes. ChemMedChem 2014; 9: 1368-1373. https://doi.org/10.1002/cmdc.201300506
  36. (b) Liu S, Lin TP, Li D, Leamer L, Shan H, Li Z, Gabbai FP, Conti PS. Lewis acid-assisted isotopic 18F-19F exchange in BODIPY dyes: facile generation of positron emission tomography/fluorescence dual modality agents for tumor imaging. Theranostics 2013; 3: 181-189. https://doi.org/10.7150/thno.5984
  37. Kim H, Kim K, Son S-H, Choi JY, Lee K-H, Kim B-T, Byun Y, Choe YS. 18F-Labeled BODIPY dye: A potential prosthetic group for brain hybrid PET/optical imaging agents ACS Chem Neurosci 2019; 10: 1445-1451. https://doi.org/10.1021/acschemneuro.8b00480
  38. Rosenthal MS, Bosch AL, Nickles RJ, Gatley SJ. Synthesis and some characteristics of No-carrier added [18F]fluorotrimethylsilane Int J Appl Radiat Isot 1985; 36: 318-319. https://doi.org/10.1016/0020-708X(85)90094-8
  39. Schirrmacher R, Bradtmoller G, Schirrmacher E, Thews O, Tillmanns J, Siessmeier T, Buchholz HG, Bartenstein P, Wangler B, Niemeyer CM, Jurkschat K. 18F-labeling of peptides by means of an organosilicon-based fluoride acceptor Angew Chem Int Ed 2006; 45: 6047-6050. https://doi.org/10.1002/anie.200600795
  40. (a) Schirrmacher E, Wangler B, Cypryk M, Bradtmoller G, Schafer M, Eisenhut M, Jurkschat K, Schirrmacher R. Synthesis of p-(di-tert-butyl-[18F]fluorosilyl) benzaldehyde ([18F]SiFA-A) with high specific activity by isotopic exchange: A convenient labeling synthon for the 18F-labeling of N-aminooxy derivatized peptides Bioconjugate Chem 2007; 18: 2085-2089. https://doi.org/10.1021/bc700195y
  41. (b) Tietze LF, Schmuck K. SiFA azide: A new building block for PET imaging using click chemistry Synlett 2011: 1697-1700.
  42. Kostikov AP, Chin J, Orchowski K, Schirrmacher E, Niedermoser S, Jurkschat K, Iovkova-Berends L, Wangler C, Wangler B, Schirrmacher R. Synthesis of [18F]SiFB: a prosthetic group for direct protein radiolabeling for application in positron emission tomography Nat Protocol 2012; 7: 1956-1963. https://doi.org/10.1038/nprot.2012.110
  43. Narayanam MK, Toutov AA, Murphy JM. Rapid one-step 18F-labeling of peptides via heteroaromatic silicon-fluoride acceptors Org Lett 2020; 22: 804-808. https://doi.org/10.1021/acs.orglett.9b04160
  44. McBride WJ, Sharkey RM, Goldenberg DM. Radiofluorination using aluminum-fluoride (Al18F) EJNMMI Res 2013; 3: 36.
  45. McBride WJ, Sharkey RM, Karacay H, D'Souza CA, Rossi EA, Laverman P, Chang C-H, Boerman OC, Goldenberg DM. A novel method of 18F radiolabeling for PET J Nucl Med 2009; 50: 991-998. https://doi.org/10.2967/jnumed.108.060418
  46. Wan W, Guo N, Pan D, Yu C, Weng Y, Luo S, Ding H, Xu Y, Wang L, Lang L, Xie Q, Yang M, Xiaoyuan Chen X. First experience of 18F-alfatide in lung cancer patients using a new lyophilized kit for rapid radiofluorination J Nucl Med 2013; 54: 691-698. https://doi.org/10.2967/jnumed.112.113563
  47. (a) Yu C, Pan D, Mi B, Xu Y, Lang L, Niu G, Yang M, Wan W, Chen X. 18F-Alfatide II PET/CT in healthy human volunteers and patients with brain metastases Eur J Nucl Med Mol Imaging 2015; 42: 2021-2028. https://doi.org/10.1007/s00259-015-3118-2
  48. (b) Zhang H, Liu N, Gao S, Hu X, Zhao W, Tao R, Chen Z, Zheng J, Sun X, Xu L, Li W, Yu J, Yuan S. Can an 18F-ALF-NOTA-PRGD2 PET/CT scan predict treatment sensitivity to concurrent chemoradiotherapy in patients with newly diagnosed glioblastoma? J Nucl Med 2016; 57: 524-529. https://doi.org/10.2967/jnumed.115.165514
  49. Monzittu FM, Khan I, Levason W, Luthra SK, McRobbie G, Reid G. Rapid aqueous late-stage radiolabelling of [GaF3(BnMe2-tacn)] by 18F/19F isotopic exchange: Towards new PET imaging probes Angew Chem Int Ed 2018; 57: 6658 -6661. https://doi.org/10.1002/anie.201802446
  50. Blower PJ, Levason W, Luthra SK, McRobbie G, Monzittu FM, Mules TO, Reid G, Subhan MN. Exploring transition metal fluoride chelates-synthesis, properties and prospects towards potential PET probes Dalton Trans 2019; 48: 6767-6776. https://doi.org/10.1039/C8DT03696A