참고문헌
- V. V. Batyrev, On the classification of smooth projective toric varieties, Tohoku Math. J. (2) 43 (1991), no. 4, 569-585. https://doi.org/10.2748/tmj/1178227429
- V. V. Batyrev, On the classification of toric Fano 4-folds, J. Math. Sci. (New York) 94 (1999), no. 1, 1021-1050. https://doi.org/10.1007/BF02367245
- C. Casagrande, Contractible classes in toric varieties, Math. Z. 243 (2003), no. 1, 99-126. https://doi.org/10.1007/s00209-002-0453-3
- D. A. Cox, J. B. Little, and H. K. Schenck, Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, Providence, RI, 2011. https://doi.org/10.1090/gsm/124
- O. Fujino, Notes on toric varieties from Mori theoretic viewpoint, Tohoku Math. J. (2) 55 (2003), no. 4, 551-564. http://projecteuclid.org/euclid.tmj/1113247130 https://doi.org/10.2748/tmj/1113247130
- O. Fujino and H. Sato, Introduction to the toric Mori theory, Michigan Math. J. 52 (2004), no. 3, 649-665. https://doi.org/10.1307/mmj/1100623418
- W. Fulton, Introduction to Toric Varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993. https://doi.org/10.1515/9781400882526
- R. Koelman, The number of moduli of families of curves on toric surfaces, Thesis, Univ. Nijmegen, 1991.
- A. Laface and M. Melo, On deformations of toric varieties, preprint, arXiv:1610.03455.
- K. Matsuki, Introduction to the Mori program, Universitext, Springer-Verlag, New York, 2002. https://doi.org/10.1007/978-1-4757-5602-9
- T. Minagawa, On classification of weakened Fano 3-folds with B2(X) = 2, in Proc. of Algebraic Geometry Symposium, Kinosaki, Oct. 2000.
- T. Minagawa, Global smoothing of singular weak Fano 3-folds, J. Math. Soc. Japan 55 (2003), no. 3, 695-711. https://doi.org/10.2969/jmsj/1191418998
- T. Oda, Convex bodies and algebraic geometry, translated from the Japanese, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 15, Springer-Verlag, Berlin, 1988.
- M. Reid, Decomposition of toric morphisms, in Arithmetic and geometry, Vol. II, 395-418, Progr. Math., 36, Birkhauser Boston, Boston, MA, 1983.
- M. Reid, Toward the classification of higher-dimensional toric Fano varieties, Tohoku Math. J. (2) 52 (2000), no. 3, 383-413. https://doi.org/10.2748/tmj/1178207820
- M. Reid, The classification of smooth toric weakened Fano 3-folds, Manuscripta Math. 109 (2002), no. 1, 73-84. https://doi.org/10.1007/s002290200289
- H. Sato and Y. Suyama, Remarks on toric manifolds whose Chern characters are positive, Comm. Algebra 48 (2020), no. 6, 2528-2538. https://doi.org/10.1080/00927872.2020.1719412