DOI QR코드

DOI QR Code

ASYMPTOTIC FOR THE NUMBER OF STAR OPERATIONS ON ONE-DIMENSIONAL NOETHERIAN DOMAINS

  • Spirito, Dario (Dipartimento di Matematica e Fisica Universita degli Studi "Roma Tre" and Dipartimento di Matematica Universita di Padova)
  • Received : 2020.09.24
  • Accepted : 2021.02.09
  • Published : 2021.09.01

Abstract

We study the set of star operations on local Noetherian domains D of dimension 1 such that the conductor (D : T) (where T is the integral closure of D) is equal to the maximal ideal of D. We reduce this problem to the study of a class of closure operations (more precisely, multiplicative operations) in a finite extension k ⊆ B, where k is a field, and then we study how the cardinality of this set of closures vary as the size of k varies while the structure of B remains fixed.

Keywords

References

  1. D. D. Anderson, GCD domains, Gauss' lemma, and contents of polynomials, in NonNoetherian commutative ring theory, 1-31, Math. Appl., 520, Kluwer Acad. Publ., Dordrecht, 2000.
  2. H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8-28. https://doi.org/10.1007/BF01112819
  3. M. Fontana and M. H. Park, Star operations and pullbacks, J. Algebra 274 (2004), no. 1, 387-421. https://doi.org/10.1016/j.jalgebra.2003.10.002
  4. R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, Inc., New York, 1972.
  5. R. L. Graham, M. Grotschel, and L. Lov'asz, editors. Handbook of Combinatorics. Vol. 1, 2, Elsevier Science B.V., Amsterdam; MIT Press, Cambridge, MA, 1995.
  6. W. J. Heinzer, J. A. Huckaba, and I. J. Papick, m-canonical ideals in integral domains, Comm. Algebra 26 (1998), no. 9, 3021-3043. https://doi.org/10.1080/00927879808826325
  7. E. Houston, A. Mimouni, and M. H. Park, Integral domains which admit at most two star operations, Comm. Algebra 39 (2011), no. 5, 1907-1921. https://doi.org/10.1080/00927872.2010.480956
  8. E. Houston, Noetherian domains which admit only finitely many star operations, J. Algebra 366 (2012), 78-93. https://doi.org/10.1016/j.jalgebra.2012.05.015
  9. E. Houston, Integrally closed domains with only finitely many star operations, Comm. Algebra 42 (2014), no. 12, 5264-5286. https://doi.org/10.1080/00927872.2013.837477
  10. E. Houston and M. H. Park, A characterization of local Noetherian domains which admit only finitely many star operations: the infinite residue field case, J. Algebra 407 (2014), 105-134. https://doi.org/10.1016/j.jalgebra.2014.03.002
  11. T. W. Hungerford, On the structure of principal ideal rings, Pacific J. Math. 25 (1968), 543-547. http://projecteuclid.org/euclid.pjm/1102986148 https://doi.org/10.2140/pjm.1968.25.543
  12. W. Krull, Beitrage zur Arithmetik kommutativer Integritatsbereiche, Math. Z. 41 (1936), no. 1, 545-577. https://doi.org/10.1007/BF01180441
  13. E. Matlis, Reflexive domains, J. Algebra 8 (1968), 1-33. https://doi.org/10.1016/0021-8693(68)90031-8
  14. E. Matlis, 1-dimensional Cohen-Macaulay rings, Lecture Notes in Mathematics, Vol. 327, Springer-Verlag, Berlin, 1973.
  15. M. H. Park, On the cardinality of star operations on a pseudo-valuation domain, Rocky Mountain J. Math. 42 (2012), no. 6, 1939-1951. https://doi.org/10.1216/RMJ-2012-42-6-1939
  16. P. Samuel, Sur les anneaux factoriels, Bull. Soc. Math. France 89 (1961), 155-173. https://doi.org/10.24033/bsmf.1563
  17. D. Spirito, Star operations on Kunz domains, Int. Electron. J. Algebra 25 (2019), 171-185. https://doi.org/10.24330/ieja.504142
  18. D. Spirito, Vector subspaces of finite fields and star operations on pseudo-valuation domains, Finite Fields Appl. 56 (2019), 17-30. https://doi.org/10.1016/j.ffa.2018.11.001
  19. D. Spirito, The sets of star and semistar operations on semilocal Prufer domains, J. Commut. Algebra 12 (2020), no. 4, 581-602. https://doi.org/10.1216/jca.2020.12.581
  20. D. Spirito, Multiplicative closure operations on ring extensions, J. Pure Appl. Algebra 225 (2021), no. 4, 106555, 23 pp. https://doi.org/10.1016/j.jpaa.2020.106555
  21. R. P. Stanley, Enumerative combinatorics. Volume 1, second edition, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 2012.
  22. B. White, Star operations and numerical semigroup rings, PhD thesis, The University of New Mexico, 2014.