DOI QR코드

DOI QR Code

Development of a Basic Contrail Prediction Model for the Contrail Reduction Certification of Commercial Aircraft

민항기 비행운 저감 인증을 위한 비행운 예측 기초 모델 개발

  • Choi, Jun-Young (Department of Aeronautical Mechanical Design Engineering, Korea National University of Transportation) ;
  • Choi, Jae-Won (Department of Aeronautical Mechanical Design Engineering, Korea National University of Transportation) ;
  • Kim, Hye-Min (Department of Aeronautical Mechanical Design Engineering, Korea National University of Transportation)
  • 최준영 (한국교통대학교 항공기계설계학과) ;
  • 최재원 (한국교통대학교 항공기계설계학과) ;
  • 김혜민 (한국교통대학교 항공기계설계학과)
  • Received : 2020.12.16
  • Accepted : 2021.03.10
  • Published : 2021.06.30

Abstract

Contrails are line-shaped clouds formed by the condensation of water vapor from the interaction of exhaust gas from aircraft engines and the high-altitude atmosphere. Contrails are known to aggravate global warming by creating a greenhouse effect by absorbing or reflecting radiation emitted from the Earth. In this study, development of a model that can quantitatively predict the contrail occurrence was conducted for the reduction of contrail, which is likely to form an aircraft certification category in the future. Based on prior research results, a model that can predict the occurrence of contrail between Tokyo and Qingdao was developed, in addition to proposing improved flight altitude that can minimize the occurrence of contrail.

비행운은 항공기 엔진에서 발생하는 배기가스가 고고도의 공기와 혼합되어 수증기가 응결되면서 생성되는 구름이다. 비행운은 지구에서 방출되는 복사선을 흡수하거나 반사시키는 방식으로 온실효과를 만들어 지구 온난화를 악화시키는 것으로 알려져 있어 지구 온난화 극복을 위해서는 반드시 저감되어야 한다. 본 연구를 통해 비행운 발생을 정량적으로 예측 할 수 있는 모델을 개발하고, 이를 통해 향후 항공기 인증 항목이 될 가능성이 있는 항공기의 비행운 저감 규제에 대비하고자 한다. 연구에서는 기존 선행 연구 결과를 바탕으로 도쿄-칭다오 간 항로를 비행하는 항공기의 비행운 발생을 예측하는 모델을 개발하고, 비행 고도를 일부 변경하여 비행운 발생을 최소화 할 수 있는 향상된 비행고도를 제안하고자 한다.

Keywords

References

  1. J. Eric, "Environmental Conditions Required for Contrail Formation and Persistence," Journal of Geophysical Research Atmospheres, vol. 103, pp. 3929-3936, Sep 1997.
  2. F. Noppel and R. Singh, "Contrail Avoidance in The Aircraft Design Process," The Aeronautical Journal, vol. 112, pp. 733-737, Dec 2008. https://doi.org/10.1017/S0001924000002700
  3. U. Schumann, "On Condition for Contrail Formation from Aircraft Exhausts," Meteorologische Zeitschrift, vol. 5, pp. 4-23, Feb 1996. https://doi.org/10.1127/metz/5/1996/4
  4. E. Anderson, "Method and apparatus for suppressing contrails," US Patent 3,527,505, Jun 1970.
  5. F. Noppel and R. Singh, "Overview on Contrail and Cirrus Cloud Avoidance Technology," Journal of Aircraft, vol. 44, pp. 1721-1726, Oct 2007. https://doi.org/10.2514/1.28655
  6. A. Thompson, R. R. Friedl, H. Wesoky, "Atmosperic Effects of Aviation: First Report of the Subsonic," NASA, May 1996.
  7. F. Noppel, "Overview on Contrail And Cirrus Cloud Avoidance Technology," Journal of Aircraft, vol. 44, pp. 1721-1726, Oct 2007. https://doi.org/10.2514/1.28655
  8. O. B. Popovicheva, N. M. Persiantseva, E. E. Lukhovitskaya, N. K. Shonija, O. B. Popovicheva, N. A. Zubareva, B. Demirdjian, "Aircraft Engine Soot As Contrail Nuclei," Geophysical Research Letters, vol. 32, p. L11104 Jun 2004. https://doi.org/10.1029/2005GL022883
  9. C. Alcala-Jornod, H. van den Berch, and M. J. Rossi, "Can Soot Particles Emitted by Airplane Exhaust Contribute to the Formation of Aviation Contrails and Cirrus Clouds?," Gephysical Research Letters, vol. 29, pp. 1-1, 1-4, Sep 2002.
  10. L. S. Mark, "Calculations of Aircraft Contrail Formation Critical Temperatures," Journal of Applied Meteorology, vol. 36, pp. 1725-1729, Dec 1997. https://doi.org/10.1175/1520-0450(1997)036<1725:COACFC>2.0.CO;2
  11. C. Fichter, "The Impact of Cruise Altitude on contrails and Related Radiative Forcing Metorologische Zeitschrift vol. 14, pp. 563-573, Sep 2005. https://doi.org/10.1127/0941-2948/2005/0048
  12. F. Haglind, "Potential of lowering the contrail formation of exhausts by engine re-design," Aerospace Science and Technology, vol. 12, pp. 490-497, Dec 2007. https://doi.org/10.1016/j.ast.2007.12.001
  13. U. Schumann, "Experimental Test of the influence of Propulsion Efficiency on Contrail Formation," Journal of Aircraft, vol. 37, pp. 1083-1087, Dec 2000. https://doi.org/10.2514/2.2715