DOI QR코드

DOI QR Code

Actuator 기법을 이용한 제자리 비행하는 동축 반전 프로펠러 공력 성능에 관한 수치적 연구

Numerical Study on Aerodynamic Performance of Counter-rotating Propeller in Hover Using Actuator Method

  • 김다혜 (부산대학교 항공우주공학과) ;
  • 박영민 (한국항공우주연구원 항공기술연구부) ;
  • 오세종 (부산대학교 항공우주공학과) ;
  • 박동훈 (부산대학교 항공우주공학과)
  • Kim, Dahye (Department of Aerospace Engineering, Pusan National University) ;
  • Park, Youngmin (Aeronautics Technology Research Division, Korea Aerospace Research Institute) ;
  • Oh, Sejong (Department of Aerospace Engineering, Pusan National University) ;
  • Park, Donghun (Department of Aerospace Engineering, Pusan National University)
  • 투고 : 2020.12.21
  • 심사 : 2021.04.13
  • 발행 : 2021.06.30

초록

동축 반전 프로펠러는 기존의 단일 프로펠러와 달리 추가적인 설계 변수의 증가로 인해 실험적 성능평가에 비용과 시간 측면에서 여러 제약이 따른다. 또한 상/하단 프로펠러 사이의 상호 간섭으로 인하여 수치 해석에 있어서도 많은 시간과 자원이 요구된다. 본 연구에서는 시간 효율적인 수치해석기법인 actuator 기법을 활용하여 제자리 비행하는 동축 반전 프로펠러의 공력 성능에 관한 수치적 연구를 수행하였다. 상용 CFD 코드인 ANSYS Fluent 결과와 비교하여 해석기법의 정확성을 검증하였다. 해석 변수로는 동축 반전 프로펠러의 축 간극과 회전속도를 선정하였으며, 다양한 조건에서 동축 반전 프로펠러의 공력 성능을 획득하였다. 획득한 공력 성능을 바탕으로 단일 프로펠러와 동축 반전 프로펠러의 제자리 비행 효율 계수를 획득하고, 단일 프로펠러의 성능으로 동축 반전 프로펠러의 성능을 예측할 수 있는 예측 인자를 도출하여 actuator 기법의 활용성을 평가하였다.

Experimental investigation of counter-rotating propellers is subject to multiple time and cost constraint because of additional design parameters unlike single propeller. Also, a lot of computing time and resources are required for numerical analysis due to consideration of the interference between the upper and lower propellers. In the present study, numerical simulations were conducted to investigate the hover performance of counter-rotating propellers by using actuator method which is considered to be time-efficient. The accuracy of the present numerical methods was validated by comparing the ANSYS Fluent which is commercial CFD code. The axial spacing and rotational speed were selected as the analysis variables, and the aerodynamic performance was obtained under various conditions. Based on the obtained results, the Figure of Merit (FM) of single propeller and counter-rotating propellers and a prediction factor which enables prediction of counter-rotating propeller performance using a single propeller were derived to evaluate availability of the actuator method.

키워드

과제정보

이 논문은 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음

참고문헌

  1. C. Silva, W. Johnson, K. R. Anticliff, and M. D. Patterson, "VTOL Urban Air Mobility Concept Vehicles for Technology Development," 2018 AIAA Aviation, Atlanta, Georgia, 2018.
  2. D. Thipphavong, R. Apaza, B. Barmore, V. Battiste, B. Burian, Q. Dao, M. Feary, S. Go, K. Goodrich, J. Homola, H. Idris, P. Kopardekar, J. Lachter, N. Neogi, H. Ng, R. Oseguera-Lohr, M. Patterson, and S. Verma, "Urban Air Mobility Airspace Integration Concepts and Considerations," Aviation Technology, Integration, and Operations Conference, Atlanta, Georgia, 2018.
  3. J. Sagaga, and S. Lee, "CFD Hover Predictions for the Side-by-Side Urban Air Taxi Concept Rotor," AIAA Aviation Forum, Virtual Event, 2020.
  4. S. Lee, S. Lee, K. Song, S. Jin, J. Jung, and K. Park, "Industrial Trends of Urban Air Mobility," Proceeding of The Korean Society for Aeronautical & Space Sciences, 2019.
  5. B. Lee, A. Tullu, and H. Hwang, "Optimal Design and Design Parameter Sensitivity Analyses of and eVTOL PAV in the Conceptual Design Phase," Applied Sciences, vol. 10, no. 15, 2020.
  6. H. Kim, A. Perry, and P. Ansell, "A review of distributed electric propulsion concepts for air vehicle technology," 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, 2018.
  7. A. M. Stoll, J. Bevirt, P. P. Pei, and E. V. Stilson, "Conceptual Design of the Joby S2 Electric VTOL PAV," AIAA Aviation, Atlanta, Georgia, 2014.
  8. Y. Kim, C. Park, and H. Kim, "Performance analysis of Coaxial Propeller for Multicopter Type PAV," Journal of Aerospace System Engineering, vol. 13, No. 3, pp. 56-63, 2019. https://doi.org/10.20910/JASE.2019.13.3.56
  9. D. Shukla, N. Hiremath, and N. Komerath, "Low Reynolds Number Aerodynanmics Study on Coaxial and Quadrotor," AIAA Aviation, Atlanta, Gerogia, 2018.
  10. H. Kim and R. Brown, "A comparison of coaxial and conventional rotor performance," Journal of the American Helicopter Society, vol.55, no.1, 2010.
  11. S. Yoon, H. Lee, and T. Pulliam, "Computational Study of Flow Interaction in Coaxial Rotors," AHS Technical Meeting on Aeromechanics Design for Vertical Lift, San Francisco, California, 2016.
  12. S. Yoon, W. Chan, and T. Pulliam, "Computations of Torque-Balanced Coaxial Rotor Flows," AIAA SciTech Forum, Grapevine, Texas, 2017.
  13. Y. Lei, Y. Ji, and C. Wang, "Optimization of aerodynamic performance for co-axial rotors with different rotor spacings," International Journal of Micro Air Vehicles, vol. 10, no. 4, pp. 362-369, 2018. https://doi.org/10.1177/1756829318804763
  14. Y. Lei, and M. Cheng, "Aerodynamic performance of a Hex-rotor unmanned aerial vehicle with different rotor spacing," Measurement and Control, vol. 53, no. 3-4, pp. 711-718, 2020. https://doi.org/10.1177/0020294019901313
  15. M. Ramasamy, "Hover Performance Measurements Toward Understanding Aerodynamic Interference in Coaxial, Tandem, and Tilt Rotors," Journal of The American Helicopter Society, vol. 60, no. 3, 2015.
  16. V. Lakshminarayan, and J. Baeder, "High-Resolution Computational Investigation of Trimmed Coaxial Rotor Aerodynamics in Hover," Journal of the American Helicopter Society, vol.54, no.4, 2009.
  17. V. Lakshminarayan, and J. Baeder, "Computational Investigation of Microscale Coaxial-Rotor Aerodynamics in Hover," Journal of Aircraft, vol. 47, no. 3, 2010.
  18. Y. Song, and D. Kim, "Development of coaxial Propeller Test Facility and Experimental Study on Hover Performance Characteristics for Drone," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 46, no. 1, pp. 59-67, 2018. https://doi.org/10.5139/JKSAS.2018.46.1.59
  19. M. Sim, and K. Lee, "Numerical Investigation of the Effect of Spacing in Coaxial Propeller Multi-Copter in Hovering" Journal of The Korean Society for Aeronautical and Space Sciences, vol. 48, no. 2, pp. 89-97, 2020. https://doi.org/10.5139/JKSAS.2020.48.2.89
  20. S. Park, and O. Kwon, "Numerical Study about Aerodynamic Interaction for Coaxial Rotor Blades," 7th Asian/Australian Rotorcraft Forum, Jeju Island, Korea, 2018
  21. L. Prandtl, and A. Betz, "Vier Abhandlungen zur Hydrodynamik und Aerodynamik," Gottinger Nachrchten, Gottingen, pp. 88-92, 1927.
  22. F. Le Chuiton, "Actuatro disc modeling for helicopter rotors," Aerospace Science and Technology, vol. 8, no. 4, pp. 285-297, 2004. https://doi.org/10.1016/j.ast.2003.10.004
  23. T. Kim, S. Oh, and K. Lee, "Improved actuator surface method for wind turbine application," Renewable Energy, vol. 76, pp. 16-26, 2015. https://doi.org/10.1016/j.renene.2014.11.002
  24. ANSYS, ANSYS Fluent Theory Guide, Version 17.0
  25. N. Troldborg, J. N. Sorensen, and R. Mikkelsen. "Actuator line simulation of wake of wind turbine operating in turbulent inflow," Journal of Physics : Conference Series, vol. 75, no. 012063, 2007.
  26. I. Dobrev, F. Massouh, and M. Rapin, "Actuaor surface hybrid model," Journal of Physics : Conference Series, vol 75, no. 012019, pp. 2007.
  27. OpenFOAM, www.openfoam.com
  28. S. Lee, S. Oh, S. Choi, Y. Lee, and D. Park, "Numerical Analysis on Aerodynamic Performances and Characteristics of Quad Tilt Rotor during Forward Flight," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 46, no. 3, pp. 197-209, 2018. https://doi.org/10.5139/JKSAS.2018.46.3.197
  29. J. Park, S. Kang, M. Tai, S. Oh, and D. Park, "Study on Improvements of Actuator Surface Method for Rotor Aerodynamic Analysis," Journal of Computational Fluids Engineering, vol. 24, no. 2, pp, 76-86, 2019. https://doi.org/10.6112/kscfe.2019.24.2.076
  30. Y. Lee, S. Lee, S. Oh, J. Choi, Y. Lee, T. Cho, and D. Park, "Analysis of 3-axial Components Forces and Moments of Propeller Using Actuator Methods," Journal of Computational Fluids Engineering, vol. 25, no. 1, pp. 20-31, 2020. https://doi.org/10.6112/kscfe.2020.25.1.020
  31. N. Roh, S. Oh, and D. Park, "Numerical Investigation of Forward Flight Characteristics of Multi-Ducted Fan," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 46, no. 2, pp. 95-105, 2018. https://doi.org/10.5139/JKSAS.2018.46.2.95
  32. N. Roh, S. Oh, and D. Park, "Aerodynamic Characteristics of Helicopter with Ducted Fan Tail Rotor in Hover under Low-Speed Crosswind" International Journal of Aerospace Engineering, 2020.
  33. Y. Jung, K. Chang, S. Park, V. Ho, H. Shim, and M. Kim, " Reverse Engineering and Database of Off-the-Shelf Porpllers for Middle-Size Multirotors," Unmanned Systems, vol. 9, no. 2, pp. 1-12, 2021
  34. G. Leishman, and M. Syal, "Figure of Merit Definition for Coaxial Rotors," Journal of The American Helicopter Society, vol. 53, no. 3, 2008.