Acknowledgement
This study was supported by the Xinjiang autonomous region basic research fee in 2021, the autonomous region modern livestock and poultry seed industry promotion special fund in 2021 (2021XJHN), the Xinjiang autonomous region basic research fee in 2019 (KY2019117), the modern agricultural industrial technology system (CARS-37) and the study on school-level project (high-level talent research start-up project, 20200162).
References
- Zhao C, Raza SHA, Khan R, et al. Genetic variants in MYF5 affected growth traits and beef quality traits in Chinese Qinchuan cattle. Genomics 2020;112:2804-12. https://doi.org/10.1016/j.ygeno.2020.03.018
- Li N, Yu QL, Yan XM, Li HB, Zhang Y. Sequencing and characterization of miRNAs and mRNAs from the longissimus dorsi of Xinjiang brown cattle and Kazakh cattle. Gene 2020; 741:144537. https://doi.org/10.1016/j.gene.2020.144537
- Yan XM, Zhang Z, Meng Y, et al. Genome-wide identification and analysis of circular RNAs differentially expressed in the longissimus dorsi between Kazakh cattle and Xinjiang brown cattle. PeerJ 2020;8:e8646. https://doi.org/10.7717/peerj.8646
- Li XZ, Park BK, Shin JS, et al. Effects of dietary linseed oil and propionate precursors on ruminal microbial community, composition, and diversity in Yanbian yellow cattle. PLoS One 2015;10:e0126473. https://doi.org/10.1371/journal.pone.0126473
- Zhou J, Liu L, Chen CJ, et al. Genome-wide association study of milk and reproductive traits in dual-purpose Xinjiang Brown cattle. BMC Genomics 2019;20:827. https://doi.org/10.1186/s12864-019-6224-x
- Yan XM, Zhang Z, Liu JB, et al. Genome-wide identification and analysis of long noncoding RNAs in longissimus muscle tissue from Kazakh cattle and Xinjiang brown cattle. Asian-Australas J Anim Sci 2020 Sept 20 [Epub]. https://doi.org/10.5713/ajas.20.0317
- Li N, Zhang Y, Li HP, et al. Differential expression of mRNA-miRNAs related to intramuscular fat content in the longissimus dorsi in Xinjiang brown cattle. PLoS One 2018;13:e0206757. https://doi.org/10.1371/journal.pone.0206757
- Ju X, Huang X, Zhang M, et al. Effects of eight InDel variants in FHIT on milk traits in Xinjiang brown cattle. Anim Biotechnol 2020 May 13 [Epub]. https://doi.org/10.1080/10495398.2020.1724124
- Qian W, Li Z, Ao W, Zhao G, Li G, Wu JP. Bacterial community composition and fermentation in the rumen of Xinjiang brown cattle (Bos taurus), Tarim red deer (Cervus elaphus yarkandensis), and Karakul sheep (Ovis aries). Can J Microbiol 2017;63:375-83. https://doi.org/10.1139/cjm-2016-0596
- Bai J, Lin J, Li W, Liu M. Association of toll-like receptor 2 polymorphisms with somatic cell score in Xinjiang Brown cattle. Anim Sci J 2012;83:23-30. https://doi.org/10.1111/j.1740-0929.2011.00909.x
- Kolder ICRM, van der Plas-Duivesteijn SJ, Tan G, et al. A full-body transcriptome and proteome resource for the European common carp. BMC Genomics 2016;17:701. https://doi.org/10.1186/s12864-016-3038-y
- Bathke J, Konzer A, Remes B, McIntosh M, Klug G. Comparative analyses of the variation of the transcriptome and proteome of Rhodobacter sphaeroides throughout growth. BMC Genomics 2019;20:358. https://doi.org/10.1186/s12864-019-5749-3
- Schenk S, Bannister SC, Sedlazeck FJ, et al. Combined transcriptome and proteome profiling reveals specific molecular brain signatures for sex, maturation and circalunar clock phase. eLife 2019;8:e41556. https://doi.org/10.7554/eLife.41556
- Chen X, Tao Y, Ali A, et al. Transcriptome and proteome profiling of different colored rice reveals physiological dynamics involved in the flavonoid pathway. Int J Mol Sci 2019;20:2463. https://doi.org/10.3390/ijms20102463
- Ceciliani F, Lecchi C, Urh C, Sauerwein H. Proteomics and metabolomics characterizing the pathophysiology of adaptive reactions to the metabolic challenges during the transition from late pregnancy to early lactation in dairy cows. J Proteomics 2018;178:92-106. https://doi.org/10.1016/j.jprot.2017.10.010
- Hou S, Hao Q, Zhu Z, et al. Unraveling proteome changes and potential regulatory proteins of bovine follicular Granulosa cells by mass spectrometry and multi-omics analysis. Proteome Sci 2019;17:4. https://doi.org/10.1186/s12953-019-0152-1
- Pawlowski K, Pires JAA, Faulconnier Y, et al. Mammary gland transcriptome and proteome modifications by nutrient restriction in early lactation Holstein cows challenged with intra-mammary lipopolysaccharide. Int J Mol Sci 2019;20:1156. https://doi.org/10.3390/ijms20051156
- Ladeira MM, Schoonmaker JP, Gionbelli MP, et al. Nutrigenomics and beef quality: a review about lipogenesis. Int J Mol Sci 2016;17:918. https://doi.org/10.3390/ijms17060918
- Rosa AF, Moncau CT, Poleti MD, et al. Proteome changes of beef in Nellore cattle with different genotypes for tenderness. Meat Sci 2018;138:1-9. https://doi.org/10.1016/j.meatsci.2017.12.006
- Oh H, Lee HJ, Lee J, Jo C, Yoon Y. Identification of microorganisms associated with the quality improvement of dry-aged beef through micro-biome analysis and DNA sequencing, and evaluation of their effects on beef quality. J Food Sci 2019;84:2944-54. https://doi.org/10.1111/1750-3841.14813
- Raza SHA, Khan R, Abdelnour SA, et al. Advances of molecular markers and their application for body variables and carcass traits in Qinchuan cattle. Genes 2019;10:717. https://doi.org/10.3390/genes10090717
- Taye M, Kim J, Yoon SH, et al. Whole genome scan reveals the genetic signature of African Ankole cattle breed and potential for higher quality beef. BMC Genet 2017;18:11. https://doi.org/10.1186/s12863-016-0467-1
- Cassar-Malek I, Picard B. Expression marker-based strategy to improve beef quality. Sci World J 2016;2016:Article ID 2185323. https://doi.org/10.1155/2016/2185323
- Favero R, Menezes GRO, Torres RAA, et al. Crossbreeding applied to systems of beef cattle production to improve performance traits and carcass quality. Animal 2019;13:2679-86. https://doi.org/10.1017/s1751731119000855
- Chang T, Xia J, Xu L, et al. A genome-wide association study suggests several novel candidate genes for carcass traits in Chinese Simmental beef cattle. Anim Genet 2018;49:312-6. https://doi.org/10.1111/age.12667
- Mao Y, Hopkins DL, Zhang Y, et al. Beef quality with different intramuscular fat content and proteomic analysis using isobaric tag for relative and absolute quantitation of differentially expressed proteins. Meat Sci 2016;118:96-102. https://doi.org/10.1016/j.meatsci.2016.03.028
- Fu W, Chen N, Han S, et al. Tissue expression and variation analysis of three bovine adipokine genes revealed their effect on growth traits in native Chinese cattle. Reprod Domest Anim 2018;53:1227-34. https://doi.org/10.1111/rda.13244
- Scollan ND, Price EM, Morgan SA, Huws SA, Shingfield KJ. Can we improve the nutritional quality of meat? Proc Nutr Soc 2017;76:603-18. https://doi.org/10.1017/s0029665117001112
- Ji GG, Shu JT, Zhang M, et al. Transcriptional regulatory region and DNA methylation analysis of TNNI1 gene promoters in Gaoyou duck skeletal muscle (Anas platyrhynchos domestica). Br Poult Sci 2019;60:202-8. https://doi.org/10.1080/00071668.2019.1602250
- He H, Hu ZG, Tserennadmid S, Chen S, Liu XL. Novel muscle-specific genes TCAP, TNNI1, and FHL1 in cattle: SNVs, linkage disequilibrium, combined genotypes, association analysis of growth performance, and carcass quality traits and expression studies. Anim Biotechnol 2018;29:259-68. https://doi.org/10.1080/10495398.2017.1377084
- Shu J, Ji G, Zhang M, et al. Molecular cloning, characterization, and temporal expression profile of troponin i type 1 (TNNI1) gene in skeletal muscle during early development of Gaoyou duck (Anas Platyrhynchos Domestica). Anim Biotechnol 2019;30:118-28. https://doi.org/10.1080/10495398.2018.1444620
- Picard B, Gagaoua M, Al-Jammas M, De Koning L, Valais A, Bonnet M. Beef tenderness and intramuscular fat proteomic biomarkers: muscle type effect. PeerJ 2018;6:e4891. https://doi.org/10.7717/peerj.4891
- Yin B, Tang S, Xu J, et al. CRYAB protects cardiomyocytes against heat stress by preventing caspase-mediated apoptosis and reducing F-actin aggregation. Cell Stress Chaperones 2019;24:59-68. https://doi.org/10.1007/s12192-018-0941-y
- Hernandez-Carretero A, Weber N, LaBarge SA, et al. Cysteine-and glycine-rich protein 3 regulates glucose homeostasis in skeletal muscle. Am J Physiol Endocrinol Metab 2018;315: E267-78. https://doi.org/10.1152/ajpendo.00435.2017
- Neu R, Adams S, Munz B. Differential expression of entactin-1/ nidogen-1 and entactin-2/nidogen-2 in myogenic differentiation. Differentiation 2006;74:573-82. https://doi.org/10.1111/j.1432-0436.2006.00100.x
- Gan S, Qiu S, Feng Y, et al. Identification of genes associated with the effect of inflammation on the neurotransmission of vascular smooth muscle cell. Exp Ther Med 2017;13:1303-12. https://doi.org/10.3892/etm.2017.4138
- Boudon S, Ounaissi D, Viala D, Monteils V, Picard B, Cassar-Malek I. Label free shotgun proteomics for the identification of protein biomarkers for beef tenderness in muscle and plasma of heifers. J Proteomics 2020;217:103685. https://doi.org/10.1016/j.jprot.2020.103685
- Zhang C, Wang J, Wang G, et al. Molecular cloning and mRNA expression analysis of sheep MYL3 and MYL4 genes. Gene 2016;577:209-14. https://doi.org/10.1016/j.gene.2015.11.041
- Lee SH, Hadipour-Lakmehsari S, Murthy HR, et al. REEP5 depletion causes sarco-endoplasmic reticulum vacuolization and cardiac functional defects. Nat Commun 2020;11:965. https://doi.org/10.1038/s41467-019-14143-9
- Hussain R, Daud S, Kakar N, et al. A missense mutation (p.G274R) in gene ASPA causes Canavan disease in a Pakistani family. Mol Biol Rep 2012;39:6197-201. https://doi.org/10.1007/s11033-011-1438-2
- Gutierrez-Aguilar R, Kim DH, Woods SC, Seeley RJ. Expression of new loci associated with obesity in diet-induced obese rats: from genetics to physiology. Obesity 2012;20:306-12. https://doi.org/10.1038/oby.2011.236
- Zhu T, He Y, Yang J, Fu W, Xu X, Si Y. MYBPH inhibits vascular smooth muscle cell migration and attenuates neointimal hyperplasia in a rat carotid balloon-injury model. Exp Cell Res 2017;359:154-62. https://doi.org/10.1016/j.yexcr.2017.07.036
- Anttila S, Hirvonen A, Vainio H, Husgafvel-Pursiainen K, Hayes JD, Ketterer B. Immunohistochemical localization of glutathione S-transferases in human lung. Cancer Res 1993; 53:5643-8.
- Zhang L, Keung W, Samokhvalov V, Wang W, Lopaschuk GD. Role of fatty acid uptake and fatty acid beta-oxidation in mediating insulin resistance in heart and skeletal muscle. Biochim Biophys Acta Mol Cell Biol Lipids 2010;1801:1-22. https://doi.org/10.1016/j.bbalip.2009.09.014
- Chen Y, Chen J, Zhang C, et al. Deficiency in the short-chain acyl-CoA dehydrogenase protects mice against diet-induced obesity and insulin resistance. FASEB J 2019;33:13722-33. https://doi.org/10.1096/fj.201901474RR
- Lee HC, Shiou YL, Jhuo SJ, et al. The sodium-glucose cotransporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hyper-tensive heart failure rats. Cardiovasc Diabetol 2019;18:45. https://doi.org/10.1186/s12933-019-0849-6
- Li T, Li X, Meng H, Chen L, Meng F. ACSL1 affects triglyceride levels through the PPARγ pathway. Int J Med Sci 2020;17: 720-7. https://doi.org/10.7150/ijms.42248
- Bakshi I, Brown SHJ, Brandon AE, et al. Increasing Acyl CoA thioesterase activity alters phospholipid profile without effect on insulin action in skeletal muscle of rats. Sci Rep 2018;8:13967. https://doi.org/10.1038/s41598-018-32354-w