DOI QR코드

DOI QR Code

Optical-waveguide Phase Modulators Based on High-refractive-index Fluorinated Polyimide

고굴절률 불화폴리이미드를 이용한 광도파로 위상변조기 제작 및 특성 분석

  • Lee, Eun-Su (Department of Electronics Engineering, Pusan National University) ;
  • Chun, Kwon-Wook (Department of Electronics Engineering, Pusan National University) ;
  • Jin, Jinung (Department of Electronics Engineering, Pusan National University) ;
  • Oh, Min-Cheol (Department of Electronics Engineering, Pusan National University)
  • 이은수 (부산대학교 전자공학과, 광집적회로 연구실) ;
  • 천권욱 (부산대학교 전자공학과, 광집적회로 연구실) ;
  • 진진웅 (부산대학교 전자공학과, 광집적회로 연구실) ;
  • 오민철 (부산대학교 전자공학과, 광집적회로 연구실)
  • Received : 2021.05.11
  • Accepted : 2021.05.18
  • Published : 2021.08.25

Abstract

Fluorinated polyimide has excellent light transmittance and a high optical refractive index, and is useful for producing optical-waveguide phase modulators with low optical loss and low electric power consumption. In this work, an optical-waveguide phase modulator is designed and fabricated based on a high-refractive-index fluorinated polyimide, and its characteristics are measured. An efficient protocol for characterizing the loss components of the optical waveguide is proposed, and the propagation loss of the fabricated polyimide optical waveguide is confirmed to be 0.9 dB/cm. The phase modulator requires 9.1 mW of power for phase change of π, and the response time is 290 μs, which is improved by tenfold compared to a previous demonstration of polymeric phase modulators.

불화폴리이미드는 우수한 광투과율과 광학적 굴절률이 높은 특징을 가지며 이를 이용하여 제작된 폴리머 광도파로 위상변조기는 광손실이 작고 저전력으로 안정적인 위상제어가 가능하게 된다. 본 논문에서는 고굴절률 불화폴리이미드를 이용하여 광도파로 위상변조기를 설계하고 제작하여 특성을 분석하였다. 광도파로를 제작하여 손실을 측정하기에 효율적인 새로운 방법을 제시하였고, 제작된 폴리이미드 광도파로의 전파손실은 0.9 dB/cm로 확인되었다. 위상변조기는 π 위상변화를 위해 9.1 mW의 전력을 필요로 하였으며, 기존 폴리머 위상변조기 대비 응답속도가 10배 정도 향상된 290 μs 정도의 응답시간을 가지는 것을 확인하였다.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. S.-M. Kim, T.-H. Park, C.-S. Im, S.-S. Lee, T. Kim, and M.-C. Oh, "Temporal response of polymer waveguide beam scanner with thermo-optic phase-modulator array," Opt. Express 28, 3768-3778 (2020). https://doi.org/10.1364/OE.383514
  2. C.-S. Im, S.-M. Kim, K.-P. Lee, S.-H. Ju, J.-H. Hong, S.-W. Yoon, T. Kim, E.-S. Lee, B. Bhandari, C. Zhou, S.-Y. Ko, Y.-H. Kim, M.-C. Oh, and S.-S. Lee, "Hybrid integrated silicon nitride polymer optical phased array for efficient light detection and ranging," J. Light. Technol. (to be published).
  3. T.-H. Park, S.-M. Kim, E.-S. Lee, and M.-C. Oh, "Polymer waveguide tunable transceiver for photonic front-end in the 5G wireless network," Photonics Res. 9, 181-186 (2021). https://doi.org/10.1364/PRJ.411137
  4. S.-M. Kim, T.-H. Park, G. Huang, and M.-C. Oh, "Bias-free optical current sensors based on quadrature interferometric integrated optics," Opt. Express 26, 31599-31606 (2018). https://doi.org/10.1364/OE.26.031599
  5. A. S. Hicyilmaz and A. C. Bedeloglu, "Applications of polyimide coatings: a review," SN Appl. Sci. 3, 363 (2021). https://doi.org/10.1007/s42452-021-04362-5
  6. D.-J. Liaw, K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai, and C.-S. Ha, "Advanced polyimide materials: syntheses, physical properties and applications," Prog. Polym. Sci. 37, 907-974 (2012). https://doi.org/10.1016/j.progpolymsci.2012.02.005
  7. J. Chen and C. T. Liu, "Technology advances in flexible displays and substrates," IEEE Access 1, 150-158 (2013). https://doi.org/10.1109/ACCESS.2013.2260792
  8. L. Tao, H. Yang, J. Liu, L. Fan, and S. Yang, "Synthesis and characterization of highly optical transparent and low dielectric constant fluorinated polyimides," Polymer 50, 6009-6018 (2009). https://doi.org/10.1016/j.polymer.2009.10.022
  9. S. Ando, "Optical properties of fluorinated polyimides and their applications to optical components and waveguide circuits," J. Photopolym. Sci. Technol. 17, 219-232 (2004). https://doi.org/10.2494/photopolymer.17.219
  10. J. Yang, Q. Zhou, and R. T. Chen, "Polyimide-waveguide-based thermal optical switch using total-internal-reflection effect," Appl. Phys. Lett. 81, 2947-2949 (2002). https://doi.org/10.1063/1.1511814
  11. R. Ulrich and R. Torge, "Measurement of thin film parameters with a prism coupler," Appl. Opt. 12, 2901-2908 (1973). https://doi.org/10.1364/AO.12.002901
  12. R. A. Soref, J. Schmidtchen, and K. Petermann, "Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2," IEEE J. Quantum Electron. 27, 1971-1974 (1991). https://doi.org/10.1109/3.83406
  13. S. P. Pogossian, L. Vescan, and A. Vonsovici, "The single-mode condition for semiconductor rib waveguides with large cross section," J. Light. Technol. 16, 1851-1853 (1998). https://doi.org/10.1109/50.721072
  14. R. K. Gupta and B. K. Das, "Performance analysis of metalmicroheater integrated silicon waveguide phase-shifters," OSA Continuum 1, 703-714 (2018). https://doi.org/10.1364/OSAC.1.000703
  15. P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlos, "Faster least squares approximation," Numer. Math. 117, 219- 249 (2011). https://doi.org/10.1007/s00211-010-0331-6
  16. C. C. Paige and M. A. Saunders, "LSQR: An algorithm for sparse linear equations and sparse least squares," ACM Trans. Math. Softw. 8, 43-71 (1982). https://doi.org/10.1145/355984.355989
  17. Y.-O. Noh, C.-H. Lee, J.-M. Kim, W.-Y. Hwang, Y.-H. Won, H.-J. Lee, S.-G. Han, and M.-C. Oh, "Polymer waveguide variable optical attenuator and its reliability," Opt. Commun. 242, 533-540 (2004). https://doi.org/10.1016/j.optcom.2004.09.030
  18. A. M. Al-Hetar, A. B. Mohammad, A. S. M. Supa'at, and Z. A. Shamsan, "MMI-MZI polymer thermo-optic switch with a high refractive index contrast," J. Light. Technol. 29, 171-178 (2011). https://doi.org/10.1109/JLT.2010.2098473