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Abstract
The Korean Long-Term Care Insurance (K-LTCI) provides financial support for long-term care service to

people who need various types of assistance with daily activities. As the number of elderly people in Korea
is expected to increase in the future, the demand for long-term care insurance would also increase over time.
Projection of future expenditure on K-LTCI depends on the number of beneficiaries within the grading system
of K-LTCI based on the test scores of applicants. This study investigated the suitability of mixture distributions
to the model K-LTCI score distribution using recent empirical data on K-LTCI, provided by the National Health
Insurance Service (NHIS). Based on the developed mixture models, the number of beneficiaries in each grade
and its variability under the current grading system were estimated by simulation. It was observed that a mixture
model is suitable for K-LTCI score distribution and may prove useful in devising a funding plan for K-LTCI
benefit payment and investigating the effects of any possible revision in the K-LTCI grading system.

Keywords: demand, grading system, long-term care insurance, mixture distributions, projection,
simulation

1. Background

The Korean Long-Term Care Insurance (K-LTCI) was introduced in 2008 by the National Health
Insurance Service (NHIS) for the purpose of providing financial support to people who need assistance
with daily activities. With the rapid aging of the population, the K-LTCI has been playing an important
role in providing a social security system for the elderly in Korea. When K-LTCI was introduced,
the premium rate was 0.21% of the salary. However, the premium sharply increased to 0.68% in
2020 to reflect increased cost of operations. Population projection by Statistics Korea indicates K-
LTCI beneficiaries will keep increasing, and so will the associated costs. Thus, cost projection is
an important task and will help provide information to devise an appropriate financial plan aimed at
maintaining the sustainability of K-LTCI.

The extent of financial support from K-LTCI depends on the grade defined by the range of ex-
amination scores of applicants indicating the degree of care level needed. Therefore, the distribution
of scores assigned to K-LTCI applicants can be used to model the proportion of beneficiaries in each
grade level. Accordingly, annual cost of K-LTCI in future years can be estimated by the projected
number of beneficiaries by year and a comprehensive model for cost structure.
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The NHIS provides monthly data on the number of beneficiaries in each grade level by sex and
age group upon request; this data allows us to construct a model for the distribution of scores assigned
to K-LTCI applicants. In order to secure an appropriate model for score distribution, various types
of model structure should be explored. The goal of this study is to investigate a variety of mixture
models for score distribution and to compare them with the models explored in Kwon et al. (2016).
There has not been any discussion on demand and expenditure projections for K-LTCI services since
the revision of the K-LTCI scoring system in 2018. This study expects to initiate the discussion on
how the current grading system might affect such projections.

The developed model is expected to be utilized in the following analyses. The main purpose
of the model for score distribution is to estimate the number of beneficiaries in each grade of K-
LTCI in future years. It is desirable that the estimated number of beneficiaries is interpreted with
its variability. Simulation based on the developed model allows for quantifying the variability. In
addition, the grading structure has been revised four times ever since K-LTCI was introduced. When
further revisions on the grading structure are considered, a model for score distribution can be used to
observe the effect of revision on the number of beneficiaries in each of the revised grades.

Aging population is common to many developed countries. To improve the quality of life for
elderly population, every country has developed its own long-term care system as a form of social
security. As projection of the number of beneficiaries and of the associated costs of long-term care
system are important to guide policymaking, there has been adequate research on estimating future
demands and expenditures of long-term care.

A number of previous studies have used a cell-based approach to estimate the number of persons
requiring long-term care. This approach classifies population into a set of sub-populations, termed
cells, based on the factors affecting the utilization of long-term care. Then, based on the projected
population and utilization rate of long-term care in each cell, the number of patients who need long-
term care in each is derived. Wittenberg et al. (1998) applied the approach to estimate the elderly
population in England. The authors defined cells in terms of age, gender, dependency, and household
composition and derived future demand for long-term care. Further, Linda et al. (2007) used a similar
method to project the total cost of long-term care in Germany, Italy, Spain, and the UK.

Several studies have employed the cell-based approach to project the number of beneficiaries and
the associated expenditure under K-LTCI. Yun and Kwon (2010) used sample data and considered
several scenarios to obtain the proportion of K-LTCI beneficiaries in each cell defined by age, gender,
household type, and health status, which are all considered drivers of long-term care expenditure.
Kim and Kwon (2012), Lee and Choi (2014), and Lee and Moon (2017) followed up the discussion
suggesting modified cell-based approaches.

Another approach for projection of demand for and cost of long-term care was suggested by
Rickayzen and Walsh (2002) who utilized a multi-state model to reflect possible changes in health
status, categorized according to the severity of functional disability, to estimate long-term care demand
in UK. They constructed a mathematical formula to obtain transition probabilities from one state to
another. Based on the transition probabilities, the number of persons in each state in future years is
estimated based on their current proportions in each state. Their work was followed by Karlsson et al.
(2006) in which future cost of long-term care was projected.

Leung (2004) constructed a multi-state model to project the future demand for and cost of long-
term care for the elderly population in Australia. Based on the National Long-Term Care Survey
(NLTCS) in the USA, Chan et al. (2004) employed a multi-state model to project long-term care
demand in Hong Kong. Kwon and Lee (2011) projected the number of K-LTCI beneficiaries in each
grade and the associated total cost for future years using a multi-state model. Furthermore, Kwon
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(2013) analyzed the expected number of years during which an individual will need long-term care
and estimated the actuarial present value of the future cost of long-term care, all within a multi-state
model framework.

Additionally, several studies used scenario analysis for projection. Choi et al. (2010) estimated
the number of K-LTCI beneficiaries based on various scenarios, and Choi and Lee (2011) evaluated
the effect of possible scenarios of future policy expanding the eligibility of K-LTCI benefit on the
increase in the number of beneficiaries. Lagergren et al. (2018) performed scenario analysis for
projecting long-term care demand and expenditure in Japan and Sweden.

Other approaches can be found as well in recent literatures. Kwon et al. (2016) suggested a
simulation method based on K-LTCI score distribution for estimating the number of persons in each
grade. Xu and Chen (2019) applied Bayesian Quantile Regression to understand the relationship
between the incidence of chronic diseases and long-term care demand and derived the number of
patients who would need long-term care in the future. Vanella et al. (2020) quantified future variability
of population, which affects long-term care demand, due to uncertainty in mortality rates. The authors
used the Lee-Carter model to simulate various scenarios in future mortality rates and derived a possible
range of long-term care demands.

The main contribution of this study is extending suitable distribution models, by investigating
mixture models, of K-LTCI scores assigned to the applicants of K-LTCI. Since the grading structure
of K-LTCI has been revised recently, suitability of models for the distribution of assigned K-LTCI
scores based on updated data reflecting current grading structure of K-LTCI should be evaluated. This
study suggests up-to-date models which is suitable for modeling K-LTCI score distribution using data
from the current grading structure of K-LTCI. Finally, a more comprehensive simulation method to
estimate the number of K-LTCI beneficiaries in the future based on the developed model is discussed.

The paper is organized as follows. The process for assigning grade level in K-LTCI and the data
analyzed in this study are introduced in Sections 2 and 3. The selection of best mixture models and
comparison with other models are discussed in Section 4. Using simulation, projections of K-LTCI
beneficiaries by grade are described in Section 5, while Section 6 provides the concluding remarks.

2. Grading Structure of K-LTCI

As the detailed information on the K-LTCI is addressed in Kwon et al. (2016), this study addresses
updated grading structure of K-LTCI. The assigned K-LTCI examination score to applicants of K-
LTCI benefit varies from 31.3 to 154.3. Higher scores indicate severe health conditions requiring
higher care level. Initially K-LTCI had six grades defined according to score ranges; this grading
system has been revised four times since introduction. Table 1 summarizes the historical changes in
the K-LTCI grading system and the grading structure during each phase of K-LTCI.

At the beginning of 2018, the grading system was revised. The revision was to introduce a grade
called Cognitive Assistance. The grade shares score range with Non-grade B and C. Similar to the
difference between Grade 5 and Non-grade A, an applicant of K-LTCI with dementia whose K-LTCI
score is between 31.3 and 44.9 is entitled to Cognitive Assistance and eligible for K-LTCI benefits.
Historically, the K-LTCI grading system has been revised to expand the number of beneficiaries and
to improve homogeneity in terms of the health condition, of persons in the same grade.

Revising the grading system affects the total cost of K-LTCI since available services such as the
monthly limit of financial support and the type of service depend on the assigned grade. Therefore,
the distribution of assigned scores should be carefully understood and modeled to estimate the number
of people in each grade and their variability. Based on the estimation, the structure of services and
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Table 1: Changes in the grade level system of K-LTCI

Score range Phases
I (2008.7–2012.6) II (2012.7–2013.6) III (2013.7–2014.6) IV (2014.7–2017.12) V (2018.1–current)

31.3–39.9 Non-grade C Non-grade C Non-grade C Non-grade C Non-grade C or
Cognitive Assistance

40.0–44.9 Non-grade B Non-grade B Non-grade B Non-grade B Non-grade B or
Cognitive Assistance

45.0–50.9
Non-grade A Non-grade A Non-grade A Non-grade A Non-grade A

or Grade 5 or Grade 5
51.0–52.9

Grade 3 Grade 4 Grade 453.0–54.9
Grade 355.0–59.9 Grade 360.0–74.9 Grade 3 Grade 3

75.0–94.9 Grade 2 Grade 2 Grade 2 Grade 2 Grade 2
95.0–154.3 Grade 1 Grade 1 Grade 1 Grade 1 Grade 1

Table 2: The number of beneficiaries of K-LTCI

Male Female
Over 65 Under 65 Over 65 Under 65

2016 119,600 12,897 347,627 9,404
2017 135,722 13,393 393,632 9,690
2018 155,832 14,180 446,170 10,322
2019 180,443 15,099 509,728 10,759
2020 204,052 15,169 572,858 10,553

premium rates should be adjusted accordingly and reflected in the financial management to keep the
K-LTCI system sustainable. At the same time, characteristics of benefit payment and usage of ser-
vice among beneficiaries of the same grade should be analyzed periodically to consider any possible
revision in the grading system and to provide more practical support to people with long-term care
needs.

The main challenge in modeling K-LTCI score distribution is to fit parametric models using
grouped data based on current grading structure. That is, the number of beneficiaries in each grade,
separated by several breakpoints, is only available information for estimating parameters of a model.
A suitable model should reflect overall shape of empirical distribution while accommodating the pro-
portion of each grade level in experience data, which will allow us to properly estimate future demand
of K-LTCI and its variability in each grade. Also, models should be updated according to the revision
of K-LTCI grading system that involves a change in the set of the breakpoints.

3. Data

Data on the number of persons, separated by sex and age group, in each grade of K-LTCI at the
end of calendar month can be obtained upon request from the NHIS. As population data provided
by Statistics Korea is based on the mid-year population, which is used in the simulation discussed
in Section 6, we obtained the number of persons in each grade at the end of June in recent five
years. Because only applicants with dementia are covered by K-LTCI for ages under 65, the score
distribution model should be constructed separately by age group.

Table 2 summarizes the number of beneficiaries being covered by K-LTCI at the mid-point of each
calendar year; the number reflects the overall increasing trend for both age groups. The significant
increase in the number of beneficiaries in the older age group is due to the increase in elderly popula-
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Table 3: The number of beneficiaries of K-LTCI

Grade Under 65 Over 65
Male Female Male Female

Grade 1 1,873 1,598 10,283 28,717
Grade 2 1,747 1,404 20,134 61,683
Grade 3 5,140 3,401 60,282 159,957
Grade 4 5,385 3,343 88,057 251,812
Grade 5 801 617 20,701 59,194

Cognitive Assistance 223 190 4,595 11,495
Non-grade A 1,715 1,024 20,056 53,647
Non-grade B 712 388 18,814 41,166
Non-grade C 238 113 5,180 8,082

Total 17,834 12,078 248,102 675,753

tion and the introduction of the Cognitive Assistance grade. The annual rate of increase in the number
of older age beneficiaries from 2016 to 2020 is 14.29% for male and 13.30% for female. The number
of female beneficiaries is roughly triple the number of male beneficiaries each year; This can be ex-
plained by the fact that there are more female survivors in elderly population, and that the incidence
of Alzheimer’s disease, one of the commonest diseases requiring long-term care, is higher in females.

The annual rate of increase of the number of younger age beneficiaries between 2016 and 2020 was
4.14% for male and 2.92% for females; this may be due to the decrease in fertility rate over the past
decades. That is, population in younger ages exposed to deterioration of health condition requiring
support for daily activities did not increase as much as population in older ages. The number of female
beneficiaries less than 65 years decreased in 2020 compared to that in the previous year. Unlike in
the older age group, the number of male beneficiaries in the less-than-65 group is about 1.5 times
the number of female beneficiaries, mainly because the incidence of vascular dementia due to stroke
is more prevalent in men. Comparing the number of beneficiaries between the two age groups, the
number of beneficiaries over 65 is higher than that of the beneficiaries under 65. The proportion of
beneficiaries over 65 in 2020 was 93.1% for male and 98.2% for female. Therefore, it is expected that
total cost of K-LTCI mostly depends on the beneficiaries aged over 65.

As the distribution of K-LTCI score among applicants who have a grade assigned from K-LTCI
is modeled in this study, the number of persons in each grade under the current grading system is
used. Table 3 presents the number of persons in each grade separated by sex and age group at the
end of June 2020. Table 3 is converted to histogram in Figure 1 according to the current grading
system of K-LTCI. The overall shape of the histograms is similar to the plots shown in Kwon et al.
(2016), although the grading system has been revised since then. Distribution models should reflect
the patterns observed in Figure 1 that the density is increasing from the lowest possible score (31.3)
to some point near the boundary of Grades 4 and 5, and then decrease gradually to the highest score
(154.3). Since the range of available examination score in the K-LTCI grading system is confined, the
parametric distribution model should be adjusted for support in that range.

4. Comparison of models

4.1. Mixture models

Mixing distributions is one of the frequently used methods to construct statistical models using two or
more parametric distributions to fit an empirical distribution when any single parametric distribution is
not able to accommodate the characteristic of distribution of given data. Various single distributions,
referring an inventory of continuous distributions in Appendix A of Klugman et al. (2019), did not
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Figure 1: Histogram of the number of beneficiaries according to K-LTCI score.

show desirable fitting results to empirical K-LTCI score distributions in Figure 1, which is consistent
with the results in Kwon et al. (2016). Therefore, mixture distributions were considered and compared
with previously suggested spliced models. A brief description of the two-component mixture models
used in this study follows.

Consider two probability density functions denoted by f1(x) and f2(x) and corresponding distri-
bution functions denoted by F1(x) and F2(x). Then, for a value of ω (0 < ω < 1), the probability
density function and distribution function of two-omponent mixture distribution, denoted by f (x) and
F(x), are expressed by

f(x) = ω · f1(x)x + (1 − ω) · f2(x) (4.1)
F(x) = ω · F1(x) + (1 − ω) · F2(x) (4.2)

Although the parametric distributions used in this study have support over [0,∞] or [−∞,∞], the
range of K-LTCI score is [31.3, 154.3]. Therefore, the range of f (x) should be adjusted by dividing by
F(154.3) − F(31.3) so that the adjusted probability density function has support on available K-LTCI
score range. Then, since we have grouped data according to break points dividing grades of K-LTCI,
the likelihood function Lm(θ) where θ indicates parameters included in the model is expressed by

Lm

(
θ
)

=

6∏
i=1

[
F(xi) − F(xi−1)

F(154.3) − F(31.3)

]ni

(4.3)

where x0, x1, . . . , x6 are 31.3, 40.0, . . . , 154.3, the current break points of K-LTCI grades correspond-
ing to the last column of Table 1 and ni is the number of persons having a K-LTCI grade equivalent
to ith lowest score interval. Parameters involved in f1(x) and f2(x) together with α are estimated
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using maximum likelihood estimation. Various combinations of two component distributions asso-
ciated with equation (4.1) were considered and models were selected based on Akaike Informaion
Criterion (AIC). Considering parsimony of a model based on grouped data with only six breakpoints,
two-components model was preferred unless the fitting result is undesirable.

As expressed in equation (4.3), parameters are included in both numerator and denominator in
each term of the product. Therefore, finding maximum likelihood estimates of parameters is non-
linear optimization problem as the exponent of each term in the product is a lot greater than total
number of parameters. For optimization, Microsoft Excel Solver function was used to obtain param-
eters maximizing log-likelihood function using various initial values of parameters as there may exist
many local maxima in the target function.

For both males and females under 65 years, a combination of two Burr distributions was found to
be the most appropriate model. Also, a combination of inverse paralogistic distribution and inverse
Weibull distribution was selected for both sexes over age 65. Together with beta distribution used in
the next section, the form of a component probability density function in the selected models in this
study is expressed as follows

• Burr distribution:
αγ(x/θ)γ

x [1 + (x/θ)γ]α+1 , x ∈ (0,∞)

• Inverse paralogistic distribution:
τ2(x/θ)τ

2

x [1 + (x/θ)τ]τ+1 , x ∈ (0,∞)

• Inverse Weibull distribution:
τ(x/θ)τe−(x/θ)τ

x
, x ∈ (0,∞)

• Beta distribution:
Γ(α)Γ(β)
Γ(α + β)

·
(x − a)α−1(b − x)β−1

(b − a)α+β−1 , x ∈ (a, b)

Component distributions of mixture models, their estimated parameters and AIC values of selected
models are summarized in Table 4. In addition, Figure 2 presents the graphs of selected models
superposed on the histograms in Figure 1.

In addition, for the best five mixture models, Bayesian information criterion (BIC), mean absolute
percentage error (MAPE), and comparison of F(x) with corresponding value of empirical distribution
at the breakpoints were presented in Appendix. It was found that the selected models based on AIC
tend to have desirable values of discrepancy measures so that mixture models can be considered
suitable for K-LTCI score distribution model.

4.2. Comparison with spliced models

Splicing is another flexible method to fit an empirical distribution that was explored to model K-LTCI
score distribution in Kwon et al. (2016). A spliced model uses two or more distribution functions that
are applied to disjoint intervals. If two probability density functions, denoted by g1(x) and g2(x), are
used, then spliced model g(x) having support on [c0, c1] with break point b (c0 < b < c1) is expressed
as

g(x) =


u ·

g1(x)
G1(b) −G1(c0)

, c0 ≤ x < b,

(1 − u) ·
g2(x)

G2(c1) −G2(b)
, b ≤ x ≤ c1,

(4.4)
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Table 4: Selected mixture models

Group Sex Component Estimated parameters ω AIC

Under 65

Male

f1(x): Burr
θ̂ = 43.8562

0.6953 58,498.58

γ̂ = 21.4845
α̂ = 0.0866

f2(x): Burr
θ̂ = 69.1023
γ̂ = 15.1080
α̂ = 7.1377

Female

f1(x): Burr
θ̂ = 44.6004

0.6953 58,498.58

γ̂ = 20.0319
α̂ = 0.0845

f2(x): Burr
θ̂ = 69.4587
γ̂ = 15.1050
α̂ = 7.1442

Over 65

Male
f1(x): Inverse paralogistic τ̂ = 3.8193

0.4915 790,395.23θ̂ = 36.3763

f2(x): Inverse Weibull τ̂ = 9.1044
θ̂ = 54.1579

Female
f1(x): Inverse paralogistic τ̂ = 4.8193

0.5085 2,131,460.64θ̂ = 39.4435

f2(x): Inverse Weibull τ̂ = 13.0356
θ̂ = 53.2873
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Figure 2: Graphs of selected mixture models.

where G1(x) and G2(x) are distribution functions corresponding to g1(x) and g2(x), respectively. In
order to model K-LTCI score distribution, c0 = 31.3 and c1 = 154.3 were used. Then, likelihood
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Table 5: Selected spliced models

Group Sex Component Estimated parameters u AIC

Under 65

Male
g1(x): Inverse paralogistic τ̂ = 4.9922

0.5088 58,492.56θ̂ = 42.9032

g2(x): Beta α̂ = 0.3860
β̂ = 1.5149

Female
g1(x): Inverse Weibull τ̂ = 5.4339

0.4699 40,228.92θ̂ = 41.9637

g2(x): Beta α̂ =0.4535
β̂ = 1.5114

Over 65

Male
g1(x): Inverse paralogistic τ̂ = 2.3488

0.6344 790,393.23θ̂ = 76.3038

g2(x): Beta α̂ = 0.5059
β̂ = 2.9545

Female
g1(x): Inverse Weibull τ̂ = 2.9385

0.6295 2,131,458.64θ̂ = 68.3062

g2(x): Beta α̂ = 0.6005
β̂ = 3.3003

function Ls(θ) is expressed as

Ls(θ) =

6∏
i=1

[G(xi) −G(xi−1)]ni (4.5)

where G(x) is distribution function obtained from equation (2.4) and x0, x1, . . . , x6 and ni are the same
as in equation (2.3). As a result of mathematical formulation in equations (4.4) and (4.5), the shape of
the spliced distribution model is discontinuous at the breakpoint b. Even if the estimation process is
constrained so that g1(x) and g2(x) be connected at the breakpoint, flexibility of the model decreases
and fitting results are likely to be unsatisfactory.

A number of two-component spliced models were investigated with b = 60, which divides the
entire K-LTCI score range into the interval associated with Grades 1–3 and remaining interval. When
b is treated as a parameter of a model, the shape of the fitted distribution was not properly matched
with empirical data. Therefore, the x1, . . . , x5 was explored as a value of b and the most optimal value
turned out to be b = 60. Table 5 summarizes the results of estimation of the selected models. Figure
3 gives the graphs of fitted spliced models.

Comparing selected mixture models with the counterparts of the spliced models, the latter attain
slightly better AIC values. However, the large jump at the breakpoint of spliced models is remarkable.
As discussed in Kwon et al. (2016), this may distort simulation results of observing the effect of
possible changes in the K-LTCI grading system. Also, determination of breakpoint of spliced models
is another modeling issue, which is not required in mixture models. Therefore, the mixture model has
lower model risk than the spliced model for the purpose of scenario analysis on the variation of the
K-LTCI grading system.

5. Simulation

Since the current K-LTCI grading system was introduced in 2018, there have been no discussions
on the projection of the number of beneficiaries and the associated costs. Based on the developed
mixture models in Section 5 and other assumptions, the number of K-LTCI beneficiaries in each
grade and their variability was projected using simulation. The followings are the descriptions of
simulation algorithm and relevant assumptions,
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Figure 3: Graphs of selected spliced models.
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Figure 4: Graphs of selected spliced models.

• Step 1. Population structure: The population size of each age group is an important indicator of
the degree of risk to health conditions requiring long-term care. Statistics Korea provides projected
population by age at the midpoint of each future year up to 2067. There are three scenarios for
population projection: High, Middle, and Low. The Middle scenario is based on the prospect that
past trend of demographic factors will continue in the future, while the High scenario indicates an
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Table 6: Assumption of the proportion of surviving K-LTCI applicants

Population Male Female
assumption Over 65 Under 65 Over 65 Under 65

Middle 0.067193 0.000780 0.137695 0.000576
High 0.067141 0.000779 0.140320 0.000570
Low 0.067249 0.000781 0.140554 0.000571

Table 7: Assumption of the proportion of Grade 5 and Cognitive Assistance

Grade Male Female
Over 65 Under 65 Over 65 Under 65

Grade 5 0.450004 0.266372 0.449838 0.328252
Cognitive Assistance 0.116301 0.139797 0.135257 0.212813

optimistic outlook in which fertility rate is higher and mortality rate is lower than in the Middle
scenario and the Low scenario represents its opposite. Future changes in population according to
the three scenarios are visualized in Figure 4.

• Step 2. Number of surviving K-LTCI applicants: Out of the number of population in each age
group (over/under age 65) and sex obtained in the previous step, the total number of surviving
K-LTCI applicants who have K-LTCI score is derived. Based on the number of beneficiaries in
Table 2 and the number of persons in Non-grades A, B, and C, the proportion of the number of
surviving K-LTCI applicants in corresponding population can be obtained. Using recent three-year
population data based on three scenarios, the assumptions for the proportions were set as shown
in Table 6. Based on the assumptions, the number of surviving K-LTCI applicants among the
projected population is simulated.

• Step 3. Distribution of surviving K-LTCI applicants in each grade: The simulated number of sur-
viving K-LTCI applicants is distributed according to the selected mixture models derived in Section
5. For each surviving K-LTCI applicant, a score is simulated using inverse transform method and
then assigned a grade under the current K-LTCI grading system.

• Step 4. Proportion of surviving applicants with dementia in Non-grades A, B, and C: there are
persons with dementia who are eligible for K-LTCI benefit in Non-grade A, B, and C. Therefore,
the simulated numbers in the score range 45.0–50.9 should be separated into Grade 5 and Non-
grade A. Likewise, the simulated numbers in the score range 31.3–44.9 should be divided into
the numbers in Cognitive Assistance and in Non-grades B and C. Using experience data for three
years, the assumptions for the proportion of beneficiaries in Grade 5 with K-LTCI score between
45.0-50.9 and the proportion of beneficiaries in Cognitive Assistance with K-LTCI score between
31.3–44.9 were set as presented in Table 7. Based on the assumption, the number of beneficiaries
in Grade 5 and in Cognitive Assistance was simulated.

• Step 5. Repeat Step 2 through Step 4 for each population projection assumption in Step 1)

Finally, the estimated number of beneficiaries in each grade in years 2030, 2040, and 2050, and
its variability were obtained after 10,000 simulations. The results are summarized in Tables 8–13. As
expected, the number of K-LTCI beneficiaries under age 65 is projected to decrease over time owing
to the decreased in population size. However, the number of beneficiaries over age 65 will increase up
to 2050 and decrease thereafter. Since K-LTCI beneficiaries are clustered toward the older ages, long-
term care expenditures will be a significant burden to both individual and the government. Therefore,
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Table 8: Projected number of beneficiaries under age 65 based on the Middle scenario

Year Grade
Male Female

Number of Standard Number of Standard
beneficiaries deviation beneficiaries deviation

2030

Grade 1 2,583 50.76 2,329 48.06
Grade 2 3,346 57.29 2,731 52.05
Grade 3 6,112 78.23 4,254 64.90
Grade 4 5,994 77.41 3,822 60.80
Grade 5 755 27.36 593 24.29

Cognitive Assistance 18 4.26 120 10.90

2040

Grade 1 2,235 47.01 2,008 45.34
Grade 2 2,897 53.45 2,353 48.12
Grade 3 5,287 72.90 3,667 60.44
Grade 4 5,188 71.46 3,294 57.57
Grade 5 654 25.34 510 22.64

Cognitive Assistance 16 3.99 104 10.17

2050

Grade 1 1,907 43.63 1,719 41.50
Grade 2 2,470 49.56 2,016 45.11
Grade 3 4,511 67.20 3,139 56.26
Grade 4 4,425 65.61 2,821 53.37
Grade 5 557 23.57 437 21.01

Cognitive Assistance 13 3.65 89 9.49

2060

Grade 1 1,573 40.26 1,455 37.90
Grade 2 2,039 45.28 1,707 41.58
Grade 3 3,722 60.58 2,660 51.32
Grade 4 3,652 60.55 2,388 48.73
Grade 5 460 21.69 370 19.37

Cognitive Assistance 11 3.31 75 8.66

Table 9: Projected number of beneficiaries under age 65 based on the High scenario

Year Grade
Male Female

Number of Standard Number of Standard
beneficiaries deviation beneficiaries deviation

2030

Grade 1 2,662 51.31 2,380 48.49
Grade 2 3,450 58.23 2,791 52.67
Grade 3 6,299 79.52 4,347 65.97
Grade 4 6,179 78.30 3,904 63.53
Grade 5 779 27.72 606 24.67

Cognitive Assistance 19 4.36 123 11.16

2040

Grade 1 2,366 48.41 2,117 45.86
Grade 2 3,066 55.49 2,484 49.32
Grade 3 5,599 74.47 3,868 62.14
Grade 4 5,492 74.67 3,475 58.90
Grade 5 692 26.18 539 23.16

Cognitive Assistance 17 4.03 109 10.50

2050

Grade 1 2,081 46.26 1,883 43.35
Grade 2 2,697 52.12 2,208 47.01
Grade 3 4,923 69.78 3,440 58.89
Grade 4 4,829 69.39 3,090 55.79
Grade 5 608 24.83 479 21.99

Cognitive Assistance 15 3.85 97 9.97

2060

Grade 1 1,808 42.37 1,694 41.15
Grade 2 2,343 48.05 1,986 44.40
Grade 3 4,278 64.18 3,094 56.13
Grade 4 4,195 64.62 2,779 52.14
Grade 5 529 23.04 431 20.80

Cognitive Assistance 13 3.59 87 9.36
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Table 10: Projected number of beneficiaries under age 65 based on the Low scenario

Year Grade
Male Female

Number of Standard Number of Standard
beneficiaries deviation beneficiaries deviation

2030

Grade 1 2,518 50.54 2,247 47.45
Grade 2 3,262 57.31 2,636 51.64
Grade 3 5,957 77.23 4,105 64.53
Grade 4 5,842 75.53 3,686 60.97
Grade 5 737 27.01 571 23.81

Cognitive Assistance 18 4.23 116 10.74

2040

Grade 1 2,117 45.51 1,868 43.19
Grade 2 2,743 52.07 2,189 46.76
Grade 3 5,007 71.02 3,412 58.79
Grade 4 4,912 69.80 3,065 55.66
Grade 5 619 24.71 475 21.83

Cognitive Assistance 15 3.84 97 9.87

2050

Grade 1 1,744 41.77 1,527 38.76
Grade 2 2,261 47.53 1,790 42.39
Grade 3 4,128 64.70 2,790 52.28
Grade 4 4,049 63.45 2,506 50.43
Grade 5 510 22.61 389 19.76

Cognitive Assistance 12 3.50 79 8.85

2060

Grade 1 1,368 37.13 1,211 35.03
Grade 2 1,774 42.24 1,421 37.52
Grade 3 3,237 56.42 2,213 47.04
Grade 4 3,175 56.26 1,988 44.32
Grade 5 400 19.77 308 17.17

Cognitive Assistance 10 3.10 62 7.93

Table 11: Projected number of beneficiaries over age 65 based on the Middle scenario

Year Grade
Male Female

Number of Standard Number of Standard
beneficiaries deviation beneficiaries deviation

2030

Grade 1 19,078 137.67 45,843 213.54
Grade 2 48,187 213.81 128,160 355.42
Grade 3 126,521 350.90 314,130 549.44
Grade 4 179,273 420.40 455,202 654.01
Grade 5 44,434 211.16 102,406 316.33

Cognitive Assistance 5,670 75.10 11,914 109.84

2040

Grade 1 25,731 158.44 60,007 246.18
Grade 2 64,988 255.45 167,754 405.34
Grade 3 170,641 407.58 411,198 631.12
Grade 4 241,779 482.08 595,830 747.40
Grade 5 59,924 243.68 134,043 365.85

Cognitive Assistance 7,645 86.66 15,595 123.91

2050

Grade 1 28,641 168.68 65,733 253.41
Grade 2 72,342 265.18 183,747 430.85
Grade 3 189,958 433.83 450,389 652.54
Grade 4 269,148 516.93 652,629 781.52
Grade 5 66,705 257.08 146,830 380.83

Cognitive Assistance 8,509 93.11 17,082 131.28

2060

Grade 1 25,731 158.44 60,007 246.18
Grade 2 64,988 255.45 167,754 405.34
Grade 3 170,641 407.58 411,198 631.12
Grade 4 241,779 482.08 595,830 747.40
Grade 5 59,924 243.68 134,043 365.85

Cognitive Assistance 7,645 86.66 15,595 123.91
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Table 12: Projected number of beneficiaries over age 65 based on the High scenario

Year Grade
Male Female

Number of Standard Number of Standard
beneficiaries deviation beneficiaries deviation

2030

Grade 1 19,394 139.37 47,437 219.20
Grade 2 48,987 221.15 132,622 358.03
Grade 3 128,621 353.60 325,071 557.02
Grade 4 182,247 422.24 471,031 663.71
Grade 5 45,165 211.80 105,971 324.40

Cognitive Assistance 5,764 74.94 12,331 110.70

2040

Grade 1 26,611 164.69 63,021 247.42
Grade 2 67,203 257.22 176,186 418.61
Grade 3 176,463 414.97 431,852 639.56
Grade 4 250,027 494.69 625,748 777.23
Grade 5 61,961 245.62 140,781 370.75

Cognitive Assistance 7,905 88.38 16,379 128.43

2050

Grade 1 30,138 173.56 70,304 262.64
Grade 2 76,114 276.82 196,543 441.63
Grade 3 199,854 441.03 481,744 677.16
Grade 4 283,174 522.51 698,064 802.74
Grade 5 70,177 265.49 157,053 390.57

Cognitive Assistance 8,953 94.90 18,273 134.24

2060

Grade 1 31,048 174.85 69,414 263.64
Grade 2 78,405 277.52 194,060 434.16
Grade 3 205,868 447.67 475,661 676.46
Grade 4 291,707 530.67 689,242 808.10
Grade 5 72,298 265.90 155,068 389.42

Cognitive Assistance 9,221 95.84 18,041 135.68

Table 13: Projected number of beneficiaries over age 65 based on the Low scenario

Year Grade
Male Female

Number of Standard Number of Standard
beneficiaries deviation beneficiaries deviation

2030

Grade 1 18,717 136.68 45,997 215.07
Grade 2 47,273 217.47 128,585 353.57
Grade 3 124,134 346.60 315,177 548.02
Grade 4 175,882 416.32 456,707 652.24
Grade 5 43,589 207.09 102,753 317.45

Cognitive Assistance 5,562 74.00 11,955 108.69

2040

Grade 1 24,761 155.62 59,247 241.23
Grade 2 62,537 247.59 165,620 404.96
Grade 3 164,211 399.31 405,954 624.04
Grade 4 232,651 473.19 588,256 742.36
Grade 5 57,662 238.96 132,342 362.76

Cognitive Assistance 7,356 86.29 15,399 124.93

2050

Grade 1 27,056 163.93 63,626 250.38
Grade 2 68,334 260.58 177,867 414.33
Grade 3 179,422 416.09 435,971 643.09
Grade 4 254,230 488.29 631,740 761.41
Grade 5 63,007 249.93 142,129 375.98

Cognitive Assistance 8,039 90.03 16,538 129.36

2060

Grade 1 27,081 164.91 60,317 245.65
Grade 2 68,399 259.39 168,605 409.54
Grade 3 179,602 419.84 413,290 626.24
Grade 4 254,475 498.27 598,851 746.33
Grade 5 63,073 247.09 134,728 361.43

Cognitive Assistance 8,047 90.07 15,675 123.30
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a model for K-LTCI expenditure, considering all elements affecting the cost, needs to be constructed
to obtain a reliable estimation on the future cost of long-term care provided by K-LTCI. This will
allow us to build the necessary infrastructure such as long-term care facilities and adequate caregiving
resources to meet the high future demand for long-term care.

6. Conclusion

The demand for long-term care for an individual and its associated costs are expected to increase as
citizens are living longer than before and are therefore, more likely to require assistance to do so.
Furthermore, due to low fertility rates in recent years, the proportion of elderly population is set to
increase resulting in higher social infrastructure and long-term care expenditure needs. K-LTCI has
been playing an important role as a social security system, providing support for the elderly who
need long-term care. Proper planning to finance future costs of K-LTCI is crucial to maintaining its
sustainability.

Several approaches to project future demand for K-LTCI have been suggested ever since the plan
was introduced. One of the approaches utilize K-LTCI score distribution to estimate the number
of beneficiaries in each grade of K-LTCI as the type and amount of benefit depends on the grade
determined by K-LTCI score. This study explored mixture models based on empirical K-LTCI score
distribution and compared them with the spliced models suggested by previous studies. Based on
simulation using the developed mixture distributions, the number of beneficiaries in each grade and its
variability were estimated. However, as there has been no study on K-LTCI demand projection based
on the current grading system launched in 2018, this study hopes to initiate an up-to-date discussion.

It was observed that mixture distribution can be a good model for K-LTCI score distribution. The
model can be utilized to project future K-LTCI beneficiaries as illustrated in this study. Securing
experience data regarding K-LTCI cost for each age group, sex, and grade provide for projection of
K-LTCI costs. Also, the developed model can be utilized to evaluate the effect of any possible change
in the K-LTCI grading system in case of further revision of the grading system. The appropriateness
of a model should be regularly tested and developed using updated and more detailed experience data.
In addition, consideration of other methods for estimating model parameters of mixture distribution
such as minimizing discrepancy between model output and empirical data is a possible area of future
research.

The eventual goal of the discussion is to construct a comprehensive model for funding the K-LTCI.
Since there are many elements of the K-LTCI system, factors affecting the cash flow of the program
should be studied and carefully reflected in the model. Also, the role of individual health insurance
and its management, which complements K-LTCI is another possible area for further research.

Appendix:

Candidate mixture models and comparison of metrics of goodness-of-fit

(1) Males under 65

Model No. f1(x) f2(x) AIC BIC MAPE
1 Burr Burr 58,498.58 58,490.02 0.0854
2 Inverse Burr Inverse Paralogistic 58,498.72 58,491.39 0.9261
3 Burr Inv Burr 58,499.05 58,490.50 0.5215
4 Inverse Paralogistic Inverse Paralogistic 58,531.70 58,525.59 4.0634
5 Inverse Burr Inverse Burr 58,571.32 58,562.77 6.0400
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CDF value at x
x Empirical Model 1 Model 2 Model 3 Model 4 Model 5

31.3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
45.0 0.0658 0.0658 0.0652 0.0662 0.1377 0.0754
51.0 0.2069 0.2070 0.2093 0.2065 0.2776 0.1996
60.0 0.5088 0.5089 0.5079 0.5090 0.5884 0.5160
75.0 0.7970 0.7972 0.7975 0.7968 0.8633 0.7939
95.0 0.8950 0.8949 0.8952 0.8960 0.9717 0.8975
154.3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(2) Females under 65

Model No. f1(x) f2(x) AIC BIC MAPE
1 Burr Burr 40,234.92 40,226.37 0.0009
2 Inverse Burr Inverse Burr 40,234.92 40,226.37 0.0130
3 Inverse Paralogistic Inverse Paralogistic 40,236.74 40,230.63 1.6614
4 Burr Inverse Weibull 40,239.02 40,231.69 1.9729
5 Burr Inverse Paralogistic 40,239.03 40,231.70 1.9736

CDF value at x
x Empirical Model 1 Model 2 Model 3 Model 4 Model 5

31.3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
45.0 0.0572 0.0573 0.0573 0.0919 0.0390 0.0596
51.0 0.1931 0.1932 0.1932 0.2235 0.1907 0.1908
60.0 0.4699 0.4699 0.4700 0.4974 0.4746 0.4746
75.0 0.7514 0.7515 0.7516 0.7643 0.7507 0.7507
95.0 0.8677 0.8678 0.8678 0.8821 0.8686 0.8686
154.3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(3) Males over 65

Model No. f1(x) f2(x) AIC BIC MAPE
1 Inverse Paralogistic Inv Weibull 790,395.23 790,389.12 0.0022
2 Inverse Paralogistic Inverse Gamma 790,395.23 790,389.12 0.0051
3 Inverse Weibull Inverse Weibull 790,395.81 790,389.70 0.1716
4 Inverse Burr Inverse Paralogistic 790,397.23 790,389.90 0.0014
5 Burr Inverse Gamma 790,399.23 790,390.68 0.0015

CDF value at x
x Empirical Model 1 Model 2 Model 3 Model 4 Model 5

31.3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
45.0 0.1152 0.1254 0.1390 0.1160 0.1263 0.1232
51.0 0.2795 0.2896 0.3033 0.2804 0.2906 0.2874
60.0 0.6344 0.6446 0.6582 0.6355 0.6455 0.6424
75.0 0.8774 0.8875 0.9012 0.8786 0.8885 0.8853
95.0 0.9586 0.9687 0.9823 0.9596 0.9697 0.9665

154.3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

(4) Females over 65

Model No. f1(x) f2(x) AIC BIC MAPE
1 Inverse Paralogistic Inv Weibull 2,131,460.64 2,131,454.53 0.0008
2 Inverse Paralogistic Inverse Paralogistic 2,131,460.64 2,131,454.53 0.0019
3 Inverse Paralogistic Inverse Gamma 2,131,460.64 2,131,454.53 0.0053
4 Inverse Burr Inverse Paralogistic 2,131,462.64 2,131,455.31 0.0076
5 Burr Inverse Weibull 2,131,462.64 2,131,455.31 0.0075
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CDF value at x
x Empirical Model 1 Model 2 Model 3 Model 4 Model 5

31.3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
45.0 0.0899 0.0907 0.0907 0.0962 0.0906 0.0929
51.0 0.2569 0.2577 0.2577 0.2631 0.2576 0.2599
60.0 0.6295 0.6303 0.6303 0.6358 0.6302 0.6325
75.0 0.8662 0.8671 0.8670 0.8725 0.8670 0.8693
95.0 0.9575 0.9583 0.9583 0.9638 0.9582 0.9605

154.3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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