DOI QR코드

DOI QR Code

DO THE OBSERVED RELATIONS OF THE GLOBAL SEISMIC PARAMETERS DEPEND ON THE MAGNETIC ACTIVITY LEVEL?

  • Kim, Ki-Beom (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Chang, Heon-Young (Department of Astronomy and Atmospheric Sciences, Kyungpook National University)
  • 투고 : 2021.04.19
  • 심사 : 2021.07.01
  • 발행 : 2021.08.31

초록

It has been known that the global asteroseismic parameters as well as the stellar acoustic mode parameters vary with stellar magnetic activity. Some solar-like stars whose variations are thought to be induced by magnetic activity, however, show mode frequencies changing with different magnitude and phase unlike what is expected for the Sun. Therefore, it is of great importance to find out whether expected relations are consistently manifested regardless of the phase of the stellar magnetic cycle, in the sense that observations are apt to cover a part of a complete cycle of stellar magnetic activity unless observations span several decades. Here, we explore whether the observed relations of the global seismic parameters hold good regardless of the phase of the stellar magnetic cycle, even if observations only cover a part of the stellar magnetic cycle. For this purpose, by analyzing photometric Sun-as-a-star data from 1996 to 2019 covering solar cycles 23 and 24, we compare correlations of the global asteroseismic parameters and magnetic proxies for four separate intervals of the solar cycle: solar minima ±2 years, solar minima +4 years, solar maxima ±2 years, and solar maxima +4 years. We have found that the photometric magnetic activity proxy, Sph, is an effective proxy for the solar magnetic activity regardless of the phase of the solar cycle. The amplitude of the mode envelope correlates negatively with the solar magnetic activity regardless of the phase of the solar cycle. However, relations between the central frequency of the envelope and the envelope width are vulnerable to the phase of the stellar magnetic cycle.

키워드

과제정보

The VIRGO instrument onboard SoHO is a cooperative effort of scientists, engineers, and technicians, to whom we are indebted. SoHO is a project of international collaboration between ESA and NASA. The authors thank the anonymous referees for critical comments and helpful suggestions. This study was funded by the Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT and Future Planning (grant no. 2018R1A6A1A06024970). HYC was supported by a National Research Foundation of Korea Grant funded by the Korean government (grant no. NRF-2018R1D1A3B070421880).

참고문헌

  1. Aerts, C., Christensen-Dalsgaard, J., Kurtz, D. W. 2010, Asteroseismology, Astron. Astrophys. Library (Berlin: Springer)
  2. Appourchaux, T., Michel, E., Auvergne, M., et al. 2008, CoRoT Sounds the Stars: p-mode Parameters of Sun-like Oscillations on HD 49933, A&A, 488, 705 https://doi.org/10.1051/0004-6361:200810297
  3. Arentoft, T., Kjeldsen, H., Bedding, T. R., et al. 2008, A Multisite Campaign to Measure Solar-like Oscillations in Procyon. I. Observations, Data Reduction, and Slow Variations, ApJ, 687, 1180 https://doi.org/10.1086/592040
  4. Baglin, A., Auvergne, M., Barge, P., et al. 2006, Scientific Objectives for a Minisat: CoRoT, The CoRoT Mission Pre-Launch Status - Stellar Seismology and Planet Finding, ESA Special Publication, 1306, 33
  5. Balmforth, N. J. 1992, Solar Pulsational Stability - III. Acoustical Excitation by Turbulent Convection, MNRAS, 255, 639 https://doi.org/10.1093/mnras/255.4.639
  6. Bedding, T. R., Kjeldsen, H., Campante, T. L., et al. 2010, A Multi-Site Campaign to Measure Solar-Like Oscillations in Procyon. II. Mode Frequencies, ApJ, 713, 935 https://doi.org/10.1088/0004-637X/713/2/935
  7. Belkacem, K., Goupil, M. J., Dupret, M. A., et al. 2011, The Underlying Physical Meaning of the νmaxc Relation, A&A, 530, A142 https://doi.org/10.1051/0004-6361/201116490
  8. Belkacem, K., Samadi, R., Mosser, B., et al. 2013, Progress in Physics of the Sun and Stars: A New Era in Helio- and Asteroseismology, ASPC, 479, 61
  9. Bellinger, E. P. 2019, A Seismic Scaling Relation for Stellar Age, MNRAS, 486, 4612 https://doi.org/10.1093/mnras/stz714
  10. Bellinger, E. P. 2020, A Seismic Scaling Relation for Stellar Age II: The Red Giant Branch, MNRAS, 492, L50 https://doi.org/10.1093/mnrasl/slz178
  11. Borucki, W. J., Koch, D., Basri, G., et al. 2010, Kepler Planet-Detection Mission: Introduction and First Results, Science, 327, 977 https://doi.org/10.1126/science.1185402
  12. Broomhall, A.-M. 2017, Seismological Insights into Solar and Stellar Magnetic Activity Cycles, EPJWC, 160, 02009
  13. Chaplin, W. J., Elsworth, Y., Isaak, G. R., et al. 1998, An Analysis of Solar p-mode Frequencies Extracted from BiSON Data: 1991-1996, MNRAS, 300, 1077 https://doi.org/10.1046/j.1365-8711.1998.01999.x
  14. Chaplin, W. J., Elsworth, Y., Isaak, G. R., et al. 2000, Variations in the Excitation and Damping of Low-l solar p Modes over the Solar Activity Cycle, MNRAS, 313, 32 https://doi.org/10.1046/j.1365-8711.2000.03176.x
  15. Chaplin, W. J., Appourchaux, T., Elsworth, Y., et al. 2001, The Phenomenology of Solar-cycle-induced Acoustic Eigenfrequency Variations: A Comparative and Complementary Analysis of GONG, BiSON and VIRGO/LOI Data, MNRAS, 324, 910 https://doi.org/10.1046/j.1365-8711.2001.04357.x
  16. Chaplin, W. J., Elsworth, Y., Isaak, G. R., et al. 2003, Does the Energy Supplied to Low-l Solar p-Modes Vary over the Activity Cycle?, ApJL, 582, L115 https://doi.org/10.1086/367688
  17. Chaplin, W. J., Elsworth, Y., Isaak, G. R., et al. 2004, The Solar Cycle as Seen by Low-l p-mode Frequencies: Comparison with Global and Decomposed Activity Proxies, MNRAS, 352, 1102 https://doi.org/10.1111/j.1365-2966.2004.07998.x
  18. Chaplin, W. J., Elsworth, Y., Houdek, G., et al. 2007, On Prospects for Sounding Activity Cycles of Sun-like Stars with Acoustic Modes, MNRAS, 377, 17 https://doi.org/10.1111/j.1365-2966.2007.11581.x
  19. Davies, G. R., Chaplin, W. J., Farr, W. M., et al. 2015, Asteroseismic Inference on Rotation, Gyrochronology and Planetary System Dynamics of 16 Cygni, MNRAS, 446, 2959 https://doi.org/10.1093/mnras/stu2331
  20. Elsworth, Y., Howe, R., Isaak, G. R., et al. 1990, Variation of Low-order Acoustic Solar Oscillations over the Solar Cycle, Nature, 345, 322 https://doi.org/10.1038/345322a0
  21. Elsworth, Y., Howe, R., Isaak, G. R., et al. 1994, Solar p-Mode Frequencies and Their Dependence on Solar Activity: Recent Results from the BISON Network, ApJ, 434, 801 https://doi.org/10.1086/174783
  22. Fan, Y. 2009, Magnetic Fields in the Solar Convection Zone, Living Rev. Sol. Phys., 6, 4 https://doi.org/10.12942/lrsp-2009-4
  23. Fossat, E., Gelly, B., Grec, G., et al. 1987, Search for Solar P-Mode Frequency Changes Between 1980 and 1985, A&A, 177, L47
  24. Frohlich, C., Romero, J., Roth, H., et al. 1995, VIRGO: Experiment for Helioseismology and Solar Irradiance Monitoring, Sol. Phys., 162, 101 https://doi.org/10.1007/BF00733428
  25. Frohlich, C., Andersen, B. N., Appourchaux, T., et al. 1997, First Results from VIRGO, the Experiment for Helioseismology and Solar Irradiance Monitoring on SOHO, Sol. Phys., 170, 1 https://doi.org/10.1023/A:1004969622753
  26. Gabriel, A. H., Grec, G., Charra, J., et al. 1995, Global Oscillations at Low Frequency from the SOHO Mission (GOLF), Sol. Phys., 162, 61 https://doi.org/10.1007/BF00733427
  27. Gabriel, A. H., Charra, J., Grec, G., et al. 1997, Performance and Early Results from the GOLF Instrument Flown on the SOHO Mission, Sol. Phys., 175, 207 https://doi.org/10.1023/A:1004911408285
  28. Garcia, R. A., Mathur, S., Salabert, D., et al. 2010, CoRoT Reveals a Magnetic Activity Cycle in a Sun-Like Star, Science, 329, 1032 https://doi.org/10.1126/science.1191064
  29. Garcia, R. A., Ceillier, T., Salabert, D., et al. 2014, Rotation and Magnetism of Kepler Pulsating Solar-like Stars. Towards Asteroseismically Calibrated Age-rotation Relations, A&A, 572, A34 https://doi.org/10.1051/0004-6361/201423888
  30. Garcia, R. A., & Ballot, J. 2019, Asteroseismology of Solartype Stars, Living Rev. Sol. Phys., 16, 4 https://doi.org/10.1007/s41116-019-0020-1
  31. Goldreich, P., & Keeley, D. A. 1977, Solar Seismology. II. The Stochastic Excitation of the Solar p-modes by Turbulent Convection, ApJ, 212, 243 https://doi.org/10.1086/155043
  32. Goldreich, P., & Kumar, P. 1988, The Interaction of Acoustic Radiation with Turbulence, ApJ, 326, 462 https://doi.org/10.1086/166108
  33. Gough, D. 1985, Inverting Helioseismic Data, Sol. Phys., 100, 65 https://doi.org/10.1007/BF00158422
  34. Gough, D. O. 1990, Comments on Helioseismic Inference, Progress of Seismology of the Sun and Stars, 367, 283
  35. Harvey, J. 1985, High-Resolution Helioseismology, Future Missions in Solar, Heliospheric & Space Plasma Physics (Noordwijk: ESA), 235, 199
  36. Harvey, J. W., Duvall, T. L., Jefferies, S. M., et al. 1993, Chromospheric Oscillations and the Background Spectrum, ASPC, 42, 111
  37. Hekker, S. 2020, Scaling Relations for Solar-like Oscillations: A Review, Front. Astron. Space Sci., 7, 3 https://doi.org/10.3389/fspas.2020.00003
  38. Houdek, G., Balmforth, N. J., Christensen-Dalsgaard, J., et al. 1999, Amplitudes of Stochastically Excited Oscillations in Main-sequence Stars, A&A, 351, 582
  39. Howe, R., Davies, G. R., Chaplin, W. J., et al. 2015, Validation of Solar-cycle Changes in Low-degree Helioseismic Parameters from the Birmingham Solar-Oscillations Network, MNRAS, 454, 4120 https://doi.org/10.1093/mnras/stv2210
  40. Howe, R., Chaplin, W. J., Basu, S., et al. 2020, Solar Cycle Variation of νmax in Helioseismic Data and its Implications for Asteroseismology, MNRAS, 493, L49 https://doi.org/10.1093/mnrasl/slaa006
  41. Huber, D., Stello, D., Bedding, T. R., et al. 2009, Automated Extraction of Oscillation Parameters for Kepler Observations of Solar-type Stars, Commun. Asteroseismol., 160, 74
  42. Huber, D., Bedding, T. R., Stello, D., et al. 2011, Testing Scaling Relations for Solar-like Oscillations from the Main Sequence to Red Giants Using Kepler Data, ApJ, 743, 143 https://doi.org/10.1088/0004-637X/743/2/143
  43. Jimenez, A., Roca Cortes, T., & Jimenez-Reyes, S. J. 2002, Variation of the Low-degree Solar Acoustic Mode Parameters over the Solar Cycle, Sol. Phys., 209, 247 https://doi.org/10.1023/A:1021226503589
  44. Jimenez, A., Garcia, R. A., & Palle, P. L. 2011, The Acoustic Cutoff Frequency of the Sun and the Solar Magnetic Activity Cycle, ApJ, 743, 99 https://doi.org/10.1088/0004-637X/743/2/99
  45. Karoff, C. 2008, Observational Asteroseismology, Ph.D. Thesis, University of Aarhus
  46. Karoff, C. 2012, Temporal Variations in the Acoustic Signal from Faculae, MNRAS, 421, 3170 https://doi.org/10.1111/j.1365-2966.2012.20542.x
  47. Karoff, C., Metcalfe, T. S., Santos, A. R. G., et al. 2018, The Influence of Metallicity on Stellar Differential Rotation and Magnetic Activity, ApJ, 852, 46 https://doi.org/10.3847/1538-4357/aaa026
  48. Kiefer, R., Komm, R., Hill, F., et al. 2018, GONG p-Mode Parameters Through Two Solar Cycles, Sol. Phys., 293, 151 https://doi.org/10.1007/s11207-018-1370-x
  49. Kim, K., & Chang, H. Y. 2021a, Scaling Relations for Width of the Power Excess of Stellar Oscillations, New Astron., 84, 101522 https://doi.org/10.1016/j.newast.2020.101522
  50. Kim, K., & Chang, H. Y. 2021c, Temporal Variations of the Global Seismic Parameters of HD 49933 over a Magnetic Cycle, JKAS, 54, 129
  51. Kjeldsen, H., Bedding, T. R., Arentoft, T., et al. 2008, The Amplitude of Solar Oscillations Using Stellar Techniques, ApJ, 682, 1370 https://doi.org/10.1086/589142
  52. Kjeldsen, H., & Bedding, T. R. 2011, Amplitudes of Solarlike Oscillations: A New Scaling Relation, A&A, 529, L8 https://doi.org/10.1051/0004-6361/201116789
  53. Libbrecht, K. G., & Woodard, M. F. 1990, Solar-cycle Effects on Solar Oscillation Frequencies, Nature, 345, 779 https://doi.org/10.1038/345779a0
  54. Lomb, N. R. 1976, Least-Squares Frequency Analysis of Unequally Spaced Data, Ap&SS, 39, 447 https://doi.org/10.1007/BF00648343
  55. Mamajek, E. E., & Hillenbrand, L. A. 2008, Improved Age Estimation for Solar-Type Dwarfs Using ActivityRotation Diagnostics, ApJ, 687, 1264 https://doi.org/10.1086/591785
  56. Mathur, S., Garc'ia, R. A., Morgenthaler, A., et al. 2013, Constraining Magnetic-activity Modulations in Three Solar-like Stars Observed by CoRoT and NARVAL, A&A, 550, A32 https://doi.org/10.1051/0004-6361/201117913
  57. Mathur, S., Garc'ia, R. A., Ballot, J., et al. 2014, Magnetic Activity of F Stars Observed by Kepler, A&A, 562, A124 https://doi.org/10.1051/0004-6361/201322707
  58. Metcalfe, T. S., Dziembowski, W. A., Judge, P. G., et al. 2007, Asteroseismic Signatures of Stellar Magnetic Activity Cycles, MNRAS, 379, L16 https://doi.org/10.1111/j.1745-3933.2007.00325.x
  59. Michel, E., Baglin, A., Weiss, W. W., et al. 2008, First Asteroseismic Results from CoRoT, Commun. Asteroseismol. 156, 73 https://doi.org/10.1553/cia156s73
  60. Noyes, R. W., Hartmann, L. W., Baliunas, S. L., et al. 1984, Rotation, Convection, and Magnetic Activity in Lower Main-sequence Stars, ApJ, 279, 763 https://doi.org/10.1086/161945
  61. Palle, P. L., Regulo, C., & Roca Cortes, T. 1989, Solar Cycle Induced Variations of the Low L Solar Acoustic Spectrum, A&A, 224, 253
  62. Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015, Transiting Exoplanet Survey Satellite (TESS), J. Astron. Telesc. Instrum. Syst., 1, 014003-1
  63. Salabert, D., Jim'enez-Reyes, S. J., & Tomczyk, S. 2003, Study of p-mode Excitation and Damping Rate Variations from IRIS++ Observations, A&A, 408, 729 https://doi.org/10.1051/0004-6361:20031014
  64. Samadi, R., Georgobiani, D., Trampedach, R., et al. 2007, Excitation of Solar-like Oscillations across the HR Diagram, A&A, 463, 297 https://doi.org/10.1051/0004-6361:20041953
  65. Santos, A. R. G., Campante, T. L., Chaplin, W. J., et al. 2018, Signatures of Magnetic Activity in the Seismic Data of Solar-type Stars Observed by Kepler, ApJS, 237, 17 https://doi.org/10.3847/1538-4365/aac9b6
  66. Scargle, J. D. 1982, Studies in Astronomical Time Series Analysis. II. Statistical Aspects of Spectral Analysis of Unevenly Spaced Data, ApJ, 263, 835 https://doi.org/10.1086/160554
  67. Silva Aguirre, V., Stello, D., Stokholm, A., et al. 2020, Detection and Characterization of Oscillating Red Giants: First Results from the TESS Satellite, ApJL, 889, L34 https://doi.org/10.3847/2041-8213/ab6443
  68. Walker, G., Matthews, J., Kuschnig, R., et al. 2003, The MOST Asteroseismology Mission: Ultraprecise Photometry from Space, PASP, 115, 1023 https://doi.org/10.1086/377358
  69. Woodard, M. F., & Noyes, R. W. 1985, Change of Solar Oscillation Eigenfrequencies with the Solar Cycle, Nature, 318, 449 https://doi.org/10.1038/318449a0
  70. Zinn, J. C., Pinsonneault, M. H., Huber, D., et al. 2019, Testing the Radius Scaling Relation with Gaia DR2 in the Kepler Field, ApJ, 885, 166 https://doi.org/10.3847/1538-4357/ab44a9