DOI QR코드

DOI QR Code

Antioxidant and cytotoxic activities of curcumin and its analogs: An exploration of structure-activity relationships

Curcumin과 관련 성분들의 산화방지활성과 세포독성 분석 및 구조와 활성 연관성 조사

  • Lee, Bo-Hyun (Division of Applied Food System, College of Natural Science, Seoul Women's University) ;
  • Kim, Hee Jeong (Division of Applied Food System, College of Natural Science, Seoul Women's University) ;
  • Hong, Jungil (Division of Applied Food System, College of Natural Science, Seoul Women's University)
  • 이보현 (서울여자대학교 자연과학대학 식품응용시스템학부) ;
  • 김희정 (서울여자대학교 자연과학대학 식품응용시스템학부) ;
  • 홍정일 (서울여자대학교 자연과학대학 식품응용시스템학부)
  • Received : 2021.06.01
  • Accepted : 2021.07.15
  • Published : 2021.08.31

Abstract

Bioactivities of curcumin, a major pigment of Curcuma longa L., have been widely investigated. In this study, the antioxidant and cytotoxic properties of curcumin and its analogs including ferulic acid, dibenzoylmethane (DBM), and tetrahydrocurcumin (THC), and their structure-activity relationships were assessed. Ferulic acid, THC, and curcumin showed strong scavenging activities against several radicals and exhibited considerable lipid peroxidation inhibitory activity. Curcumin showed the strongest cytotoxic activities against HeLa, HCT-116, IEC-6 and INT 407 cells, whereas ferulic acid did not show any cytotoxic effect up to 100 µM against these cell lines. Cytotoxicity of curcumin and THC was significantly enhanced by superoxide dismutase and diminished by N-acetylcysteine. The combination treatment of curcumin and ferulic acid enhanced the cytotoxicity, whereas the combination of curcumin and DBM offset their toxicity. These results suggest that methoxy phenolic and β-diketon moieties are crucial for the antioxidant- and cytototoxic activities of curcumin, respectively.

본 연구에서는 curcumin과 관련 구조물질인 ferulic acid, DBM, THC을 사용하여 이들의 산화방지활성과 세포독성을 나타내는 활성과 구조 간의 연관성을 분석하였다. 각종 라디칼 소거활성과 지질산화 억제 반응에서 DBM은 거의 활성을 나타내지 못해, methoxy phenolic기가 중요한 기능 구조로 나타났으며 α, β-unsaturated carbonyl기도 이들의 산화방지 활성에 일부 관여하는 것으로 보인다. Curcumin 유도체들의 세포독성과 이들의 산화방지활성 간에는 연관성이 거의 없었으며, ROS의 생성에는 α, β-unsaturated carbonyl기가 중요한 역할을 담당하나 세포독성의 직접적인 원인이 아닌 것으로 판단된다. 세포독성 유발에는 β-diketone 구조가 중요한 역할을 하였으며, SOD/catalase 등에 의한 구조의 안정화가 세포독성을 더욱 강화시키는 것으로 판단된다. Curcumin과 ferulic acid의 조합처리에 의해 독성이 증가한 반면, DBM과 curcumin을 같이 처리 시 독성이 상쇄되었으며 THC과 curcumin은 서로 부가적인 세포독성을 나타냈다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 재원의 한국연구재단 중견연구자 지원사업(NRF-2019R1A2C1089617)과 2021년 서울여자대학교 교내학술 연구비(연구년) 지원에 의해 수행되었음(2021-0151).

References

  1. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 23: 363-398 (2003)
  2. Aggarwal BB, Deb L, Prasad S. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules 20: 185-205 (2014) https://doi.org/10.3390/molecules20010185
  3. Arshad L, Jantan I, Bukhari SN, Haque MA. Immunosuppressive Effects of natural α,β-unsaturated carbonyl-based compounds, and their analogs and derivatives, on immune cells: A review. Front. Pharmacol. 8:22 (2017) https://doi.org/10.3389/fphar.2017.00022
  4. Bielak-Zmijewska A, Grabowska W, Ciolko A, Bojko A, Mosieniak G, Bijoch L, Sikora E. The role of curcumin in the modulation of ageing. Int. J. Mol. Sci. 20: 1239 (2019) https://doi.org/10.3390/ijms20051239
  5. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200 (1958) https://doi.org/10.1038/1811199a0
  6. Chen YC, Tsai SH, Shen SC, Lin JK, Lee WR. Alternative activation of extracellular signal-regulated protein kinases in curcumin and arsenite-induced HSP70 gene expression in human colorectal carcinoma cells. Eur. J. Cell Biol. 80: 213-221 (2001) https://doi.org/10.1078/0171-9335-00158
  7. El-Husseiny WM, El-Sayed MA, Abdel-Aziz NI, El-Azab AS, Ahmed ER, Abdel-Aziz AA. Synthesis, antitumour and antioxidant activities of novel α,β-unsaturated ketones and related heterocyclic analogues: EGFR inhibition and molecular modelling study. J. Enzym. Inhib. Med. Ch. 33: 507-518 (2018) https://doi.org/10.1080/14756366.2018.1434519
  8. Fang J, Lu J, Holmgren A. Thioredoxin reductase is irreversibly modified by curcumin: a novel molecular mechanism for its anticancer activity. J. Biol. Chem. 280: 25284-25290 (2005) https://doi.org/10.1074/jbc.M414645200
  9. Hong J, Bose M, Ju J, Ryu JH, Chen X, Sang S, Lee MJ, Yang CS. Modulation of arachidonic acid metabolism by curcumin and related β-diketone derivatives: effects on cytosolic phospholipase A2, cyclooxygenases and 5-lipoxygenase. Carcinogenesis 25: 1671-1679 (2004) https://doi.org/10.1093/carcin/bgh165
  10. Hong J. Curcumin-induced growth inhibitory effects on HeLa cells altered by antioxidant modulators. Food Sci. Biotechnol. 16: 1029-1034 (2007)
  11. Kotha RR, Luthria DL. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules 24: 2930 (2019) https://doi.org/10.3390/molecules24162930
  12. Kunwar A, Barik A, Sandur SK, Indira Priyadarsini K. Differential antioxidant/pro-oxidant activity of dimethoxycurcumin, a synthetic analogue of curcumin. Free Radical Res. 45: 959-965 (2011) https://doi.org/10.3109/10715762.2011.571681
  13. Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J. Neurosci. 21: 8370-8377 (2001) https://doi.org/10.1523/JNEUROSCI.21-21-08370.2001
  14. Lin YG, Kunnumakkara AB, Nair A, Merritt WM, Han LY, ArmaizPena GN, Kamat AA, Spannuth WA, Gershenson DM, Lutgendorf SK, Aggarwal BB, Sood AK. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kB pathway. Clin. Cancer Res. 13: 3423-3430 (2007) https://doi.org/10.1158/1078-0432.CCR-06-3072
  15. Lu Y, Dong Y, Li X, He Q. The nitrite-scavenging properties of catechol, resorcinol, and hydroquinone: a comparative study on their nitration and nitrosation reactions. J. Food Sci. 11:C2692-C2696 (2016)
  16. Marcocci L, Maguire JJ, Droy-Lefaix MT, Packer L. The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. J. Enzym. Inhib. Med. Ch. 201: 748-755 (1994)
  17. Masuda T, Hidaka K, Shinohara A, Maekawa T, Takeda Y, Yamaguchi H. Chemical studies on antioxidant mechanism of curcuminoid: analysis of radical reaction products from curcumin. J. Agr. Food Chem. 47: 71-77 (1999) https://doi.org/10.1021/jf9805348
  18. McNally SJ, Harrison EM, Ross JA, Garden OJ, Wigmore SJ. Curcumin induces heme oxygenase 1 through generation of reactive oxygen species, p38 activation and phosphatase inhibition. Int. J. Mol. Med. 19: 165-172 (2007)
  19. Nardo L, Paderno R, Andreoni A, Masson M, Haukvik T, Tonnesen HH. Role of H-bond formation in the photoreactivity of curcumin. J. Spectrosc. 22: 187-198 (2008) https://doi.org/10.1155/2008/928407
  20. Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radical Bio. Med. 47: 469-84 (2009) https://doi.org/10.1016/j.freeradbiomed.2009.05.032
  21. Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit. Rev. Food Sci. 60: 887-939 (2020) https://doi.org/10.1080/10408398.2018.1552244
  22. Pendurthi UR, Williams JT, Rao LV. Inhibition of tissue factor gene activation in cultured endothelial cells by curcumin. Suppression of activation of transcription factors Egr-1, AP-1, and NF-kB. Arterioscl. Throm. Vas. 17: 3406-3413 (1997) https://doi.org/10.1161/01.ATV.17.12.3406
  23. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 26: 1231-1237 (1999) https://doi.org/10.1016/S0891-5849(98)00315-3
  24. Surh YJ, Chun KS. Cancer chemopreventive effects of curcumin. Adv. Exp. Med. Biol., 595: 149-172 (2007) https://doi.org/10.1007/978-0-387-46401-5_5
  25. Su CC, Lin JG, Li TM, Chung JG, Yang JS, Ip SW, Lin WC, Chen GW. Curcumin-induced apoptosis of human colon cancer colo 205 cells through the production of ROS, Ca2+ and the activation of caspase-3. Anticancer Res. 26: 4379-4389 (2006)
  26. Tomeh MA, Hadianamrei R, Zhao X. A Review of curcumin and tts derivatives as anticancer agents. Int. J. Mol. Sci. 20: 1033 (2019) https://doi.org/10.3390/ijms20051033
  27. Woo JH, Kim YH, Choi YJ, Kim DG, Lee KS, Bae JH, Min DS, Chang JS, Jeong YJ, Lee YH, Park JW, Kwon TK. Molecular mechanisms of curcumin-induced cytotoxicity: induction of apoptosis through generation of reactive oxygen species, down-regulation of Bcl-XL and IAP, the release of cytochrome c and inhibition of Akt. Carcinogenesis 24: 1199-1208 (2003) https://doi.org/10.1093/carcin/bgg082
  28. Xie Z, Huang J, Xu X, Jin Z. Antioxidant activity of peptides isolated from alfafa leaf protein hydrolysate. Food Chem. 111; 370-376 (2008) https://doi.org/10.1016/j.foodchem.2008.03.078