Acknowledgement
본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행되었으며 이에 감사드립니다(No. 2019R1A2C1010708; No. 2020R1A2C1015028).
References
- Adelmann H, Binks BP, Mezzenga R. Oil powders and gels from particle-stabilized emulsions. Langmuir 28: 1694-1697 (2012) https://doi.org/10.1021/la204811c
- Ahmed K, Li Y., McClements DJ, Xiao H. Nanoemulsion-and emulsion-based delivery systems for curcumin: encapsulation and release properties. Food Chem. 132: 799-807 (2012) https://doi.org/10.1016/j.foodchem.2011.11.039
- Anwar SH, Kunz B. The influence of drying methods on the stabilization of fish oil microcapsules: Comparison of spray granulation, spray drying, and freeze drying. J. Food Eng. 105: 367-378 (2011) https://doi.org/10.1016/j.jfoodeng.2011.02.047
- Biduski B, da Silva WMF, Colussi R, El Halal SLDM, Lim LT, Dias ARG, de Rosa Zavareze E. Starch hydrogels: The influence of the amylose content and gelatinization method. Int. J. Biol. Macromol. 113: 443-449 (2018) https://doi.org/10.1016/j.ijbiomac.2018.02.144
- Binks BP (Ed). Modern aspects of emulsion science. Royal Society of Chemistry, Cambridge (1998)
- Cano-Higuita D, Malacrida C, Telis V. Stability of curcumin microencapsulated by spray and freeze drying in binary and ternary matrices of maltodextrin, gum arabic and modified starch. J. Food Process. Preserv. 39: 2049-2060 (2015) https://doi.org/10.1111/jfpp.12448
- Carpenter J, George S, Saharan VK. Curcumin encapsulation in multilayer oil-in-water emulsion: synthesis using ultrasonication and studies on stability and antioxidant and release activities. Langmuir. 35: 10866-10876 (2019). https://doi.org/10.1021/acs.langmuir.9b01523
- Christensen KL, Pedersen GP, Kristensen HG. Preparation of redispersible dry emulsions by spray drying. Int. J. Pharm. 212: 187-194 (2001) https://doi.org/10.1016/S0378-5173(00)00596-2
- Dai L, Li R, Wei Y, Sun C, Mao L, Gao Y. Fabrication of zein and rhamnolipid complex nanoparticles to enhance the stability and in vitro release of curcumin. Food Hydrocoll. 77: 617-628 (2018) https://doi.org/10.1016/j.foodhyd.2017.11.003
- Dickinson E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll. 17: 25-39 (2003) https://doi.org/10.1016/S0268-005X(01)00120-5
- Dickinson E. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll. 23: 1473-1482 (2009) https://doi.org/10.1016/j.foodhyd.2008.08.005
- Fioramonti SA, Rubiolo AC, Santiago LG. Characterisation of freezedried flaxseed oil microcapsules obtained by multilayer emulsions. Powder Technol. 319: 238-244 (2017) https://doi.org/10.1016/j.powtec.2017.06.052
- Ghaleshahi AZ, Rajabzadeh G. The influence of sodium alginate and genipin on physico-chemical properties and stability of WPI coated liposomes. Food Res. Int. 130: 108966 (2020) https://doi.org/10.1016/j.foodres.2019.108966
- Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol. Rev. 66: 222-307 (2014) https://doi.org/10.1124/pr.110.004044
- Ismail H, Irani M, Ahmad Z. Starch-based hydrogels: present status and applications. Int. J. Polym. Mater. Po. 62: 411-420 (2013) https://doi.org/10.1080/00914037.2012.719141
- Ismail YA, Martinez JG, Al Harrasi AS, Kim SJ, Otero TF. Sensing characteristics of a conducting polymer/hydrogel hybrid microfiber artificial muscle. Sens. Actuators B Chem. 160: 1180-1190 (2011) https://doi.org/10.1016/j.snb.2011.09.044
- Ivanov IB, Danov K, Kralchevsky PA. Flocculation and coalescence of micron-size emulsion droplets. Colloids Surf. A. 152: 161-182 (1999) https://doi.org/10.1016/S0927-7757(98)00620-7
- Jiang T, Liao W, Charcosset C. Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Res. Int. 13: 109035 (2020) https://doi.org/10.1016/j.foodres.2020.109035
- Kang J, Kim YH, Choi SJ, Rho SJ, Kim YR. Improving the stability and curcumin retention rate of curcumin-loaded filled hydrogel prepared using 4αGTase-treated rice starch. Foods, 10: 150 (2021) https://doi.org/10.3390/foods10010150
- Kaushik V, Roos YH. Limonene encapsulation in freeze-drying of gum Arabic-sucrose-gelatin systems. LWT-Food Sci. Technol. 40: 1381-1391 (2007) https://doi.org/10.1016/j.lwt.2006.10.008
- Kowalczyk A, Fau M, Karbarz M, Donten M, Stojek Z, Nowicka AM. Hydrogel with chains functionalized with carboxyl groups as universal 3D platform in DNA biosensors. Biosens. Bioelectron. 54: 222-228 (2014) https://doi.org/10.1016/j.bios.2013.11.017
- Lee BH, Choi HA, Kim MR, Hong J. Changes in chemical stability and bioactivities of curcumin by ultraviolet radiation. Food Sci. Biotechnol. 22: 279-282 (2013) https://doi.org/10.1007/s10068-013-0038-4
- Lee KY, Kim YR, Park KH, Lee HG. Effects of α-glucanotransferase treatment on the thermo-reversibility and freeze-thaw stability of a rice starch gel. Carbohydr. Polym. 63: 347-354 (2006) https://doi.org/10.1016/j.carbpol.2005.08.050
- Li M, Ma Y, Cui J. Whey-protein-stabilized nanoemulsions as a potential delivery system for water-insoluble curcumin. LWTFood Sci. Technol. 59: 49-58 (2014)
- Li Zl, Peng SF, Chen X, Zhu YQ, Zou LQ, Liu W, Liu CM. Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility. Food Res. Int. 108: 246-253 (2018) https://doi.org/10.1016/j.foodres.2018.03.048
- Li Z, Shi M, Li N, Xu R. Application of functional biocompatible nanomaterials to improve curcumin bioavailability. Front. Chem. 8: 929 (2020)
- Li J, Shin GH, Lee IW, Chen X, Park HJ. Soluble starch formulated nanocomposite increases water solubility and stability of curcumin. Food Hydrocoll. 56: 41-49 (2016) https://doi.org/10.1016/j.foodhyd.2015.11.024
- Liu F, Chen Q, Kang Z, Pan W, Zhang D, Wang L. Non-Fourier heat conduction in oil-in-water emulsions. Int. J. Heat Mass Transf. 135: 323-330 (2019) https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.105
- Liu F, Ma D, Luo X, Zhang Z, He L, Gao Y, McClements DJ. Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol. Food Hydrocoll. 79: 450-461 (2018) https://doi.org/10.1016/j.foodhyd.2018.01.017
- Lopez-Pena CL, Zheng B, Sela DA, Decker EA, Xiao H, McClements DJ. Impact of ε-polylysine and pectin on the potential gastrointestinal fate of emulsified lipids: In vitro mouth, stomach and small intestine model. Food Chem. 192: 857-864 (2016) https://doi.org/10.1016/j.foodchem.2015.07.054
- Mao L, Miao S. Structuring food emulsions to improve nutrient delivery during digestion. Food Eng. Rev. 7: 439-451 (2015) https://doi.org/10.1007/s12393-015-9108-0
- McClements DJ. Emulsion design to improve the delivery of functional lipophilic components. Annu. Rev. Food Sci. 1: 241-269 (2010) https://doi.org/10.1146/annurev.food.080708.100722
- McClements DJ. Food emulsion: Principles, practices, and techniques, 3nd edn. CRC Press, Inc., Boca Raton, FL, USA. pp. 289-373 (2015)
- McClements DJ, Decker EA, Park Y. Controlling lipid bioavailability through physicochemical and structural approaches. Crit. Rev. Food Sci. Nutr. 49: 48-67 (2009) https://doi.org/10.1080/10408390701764245
- McClements DJ, Li Y. Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Adv. Colloid Interface Sci. 159: 213-228 (2010) https://doi.org/10.1016/j.cis.2010.06.010
- Malik P, Singh M. Study of curcumin antioxidant activities in robust oil-water nanoemulsions. New J. Chem. 41: 12506-12519 (2017) https://doi.org/10.1039/C7NJ02612A
- Mohammadian M, Salami M, Momen S, Alavi F, Emam-Djomeh Z, Moosavi-Movahedi AA. Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils. Food Hydrocoll. 87: 902-914 (2019) https://doi.org/10.1016/j.foodhyd.2018.09.001
- Mohan PK, Sreelakshmi G, Muraleedharan C, Joseph R. Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy. Vib. Spectrosc. 62: 77-84 (2012) https://doi.org/10.1016/j.vibspec.2012.05.002
- Mun S, Choi Y, Park KH, Shim JY, Kim YR. Influence of environmental stresses on the stability of W/O/W emulsions containing enzymatically modified starch. Carbohydr. Polym. 92: 1503-1511 (2013) https://doi.org/10.1016/j.carbpol.2012.10.050
- Mun S, Choi Y, Park S, Surh J, Kim YR. Release properties of geltype W/O/W encapsulation system prepared using enzymaticallymodified starch. Food Chem. 157: 77-83. (2014) https://doi.org/10.1016/j.foodchem.2014.02.017
- Mun S, Kim YR, McClements DJ. Control of β-carotene bioaccessibility using starch-based filled hydrogels. Food Chem. 173: 454-461 (2015) https://doi.org/10.1016/j.foodchem.2014.10.053
- Mun S, Park S, Kim YR, McClements DJ. Influence of methylcellulose on attributes of β-carotene fortified starch-based filled hydrogels: Optical, rheological, structural, digestibility, and bioaccessibility properties. Food Res. Int. 87: 18-24 (2016) https://doi.org/10.1016/j.foodres.2016.06.008
- No J, Shin M, Mun S. Preparation of functional rice cake by using β-carotene-loaded emulsion powder. J. Food Sci. Technol. 57: 4514-4523 (2020) https://doi.org/10.1007/s13197-020-04488-1
- Pan Y, Xie QT, Zhu J, Li XM, Meng R, Zhang B, Chen HQ, Jin ZY. Study on the fabrication and in vitro digestion behavior of curcumin-loaded emulsions stabilized by succinylated whey protein hydrolysates. Food Chem. 287: 76-84 (2019) https://doi.org/10.1016/j.foodchem.2019.02.047
- Park HR, Rho SJ, Kim YR. Solubility, stability, and bioaccessibility improvement of curcumin encapsulated using 4-α-glucanotransferase-modified rice starch with reversible pH-induced aggregation property. Food Hydrocoll. 95: 19-32 (2019) https://doi.org/10.1016/j.foodhyd.2019.04.012
- Park HR, Kang J, Rho SJ, Kim YR. Structural and physicochemical properties of enzymatically modified rice starch as influenced by the degree of enzyme treatment. J. Carbohydr. Chem. 39: 250-266 (2020) https://doi.org/10.1080/07328303.2020.1788574
- Park S, Kim YR. Clean label starch: Production, physicochemical characteristics, and industrial applications. Food Sci. Biotechnol. 30: 1-17 (2021) https://doi.org/10.1007/s10068-020-00834-3
- Park S, Mun S, Kim YR. Effect of xanthan gum on lipid digestion and bioaccessibility of β-carotene-loaded rice starch-based filled hydrogels. Food Res. Int. 105: 440-445 (2018) https://doi.org/10.1016/j.foodres.2017.11.039
- Pinheiro AC, Coimbra MA, Vicente A A. In vitro behaviour of curcumin nanoemulsions stabilized by biopolymer emulsifiers-Effect of interfacial composition. Food Hydrocoll. 52: 460-467 (2016) https://doi.org/10.1016/j.foodhyd.2015.07.025
- Porter CJ, Kaukonen AM, Boyd BJ, Edwards GA, Charman WN. Susceptibility to lipase-mediated digestion reduces the oral bioavailability of danazol after administration as a medium-chain lipid-based microemulsion formulation. Pharm. Res. 21: 1405-1412 (2004) https://doi.org/10.1023/B:PHAM.0000036914.22132.cc
- Porter CJ, Pouton CW, Cuine JF, Charman WN. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv. drug deliv. Rev. 60: 673-691 (2008) https://doi.org/10.1016/j.addr.2007.10.014
- Qian C, Decker EA, Xiao H, McClements DJ. Nanoemulsion delivery systems: Influence of carrier oil on β-carotene bioaccessibility. Food Chem. 135: 1440-1447 (2012) https://doi.org/10.1016/j.foodchem.2012.06.047
- Qiu F, Li Y, Yang D, Li X, Sun P. Biodiesel production from mixed soybean oil and rapeseed oil. Appl. Energy, 88: 2050-2055 (2011) https://doi.org/10.1016/j.apenergy.2010.12.070
- Rousseau D. Fat crystals and emulsion stability-a review. Food Res. Int. 33: 3-14 (2000) https://doi.org/10.1016/S0963-9969(00)00017-X
- Saari H, Wahlgren M, Rayner M, Sjoo M, Matos M. A comparison of emulsion stability for different OSA-modified waxy maize emulsifiers: Granules, dissolved starch, and non-solvent precipitates. PloS one. 14: e0210690 (2019) https://doi.org/10.1371/journal.pone.0210690
- Sari TP, Mann B, Kumar R, Singh RRB, Sharma R, Bhardwaj M, Athira S. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocoll. 43: 540-546 (2015) https://doi.org/10.1016/j.foodhyd.2014.07.011
- Silva KCG, Bourbon AI, Pastrana L, Sato ACK. Emulsion-filled hydrogels for food applications: influence of pH on emulsion stability and a coating on microgel protection. Food Funct. 11: 8331-8341 (2020) https://doi.org/10.1039/D0FO01198C
- Sousdaleff M, Baesso ML, Neto AM, Nogueira AC, Marcolino VA, Matioli G. Microencapsulation by freeze-drying of potassium norbixinate and curcumin with maltodextrin: stability, solubility, and food application. J. Agri. Food Chem. 61: 955-965 (2013) https://doi.org/10.1021/jf304047g
- Sun C, Xu C, Mao L, Wang D, Yang J, Gao Y. Preparation, characterization and stability of curcumin-loaded zein-shellac composite colloidal particles. Food Chem. 228: 656-667 (2017) https://doi.org/10.1016/j.foodchem.2017.02.001
- Suresh D, Gurudutt K, Srinivasan K. Degradation of bioactive spice compound: curcumin during domestic cooking. Eur. Food Res. Technol. 228: 807-812 (2009) https://doi.org/10.1007/s00217-008-0993-9
- Tcholakova S, Denkov ND, Ivanov IB, Campbell B. Coalescence stability of emulsions containing globular milk proteins. Adv. Colloid Interface Sci. 123: 259-293 (2006) https://doi.org/10.1016/j.cis.2006.05.021
- Tonnesen HH, Karlsen J, van Henegouwen GB. Studies on curcumin and curcuminoids VIII. Photochemical stability of curcumin. Z. Lebensm. Unters. Forsch. 183: 116-122 (1986) https://doi.org/10.1007/BF01041928
- Wang MS, Chaudhari A, Pan Y, Young S, Nitin N. Controlled release of natural polyphenols in oral cavity using starch Pickering emulsion. MRS Online Proceedings Library, 1688: 7-11 (2014)
- Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal. 15: 1867-1876 (1997) https://doi.org/10.1016/S0731-7085(96)02024-9
- Wang L, Wang YJ. Comparison of protease digestion at neutral pH with alkaline steeping method for rice starch isolation. Cereal Chem. 78: 690-692 (2001) https://doi.org/10.1094/CCHEM.2001.78.6.690
- Xie J, Luo Y, Chen Y, Liu Y, Ma Y, Zheng Q, Yue P, Yang M. Redispersible Pickering emulsion powder stabilized by nanocrystalline cellulose combining with cellulosic derivatives. Carbohydr. Polym. 213: 128-137 (2019) https://doi.org/10.1016/j.carbpol.2019.02.064
- Yang Y, McClements DJ. Vitamin E bioaccessibility: Influence of carrier oil type on digestion and release of emulsified α-tocopherol acetate. Food Chem. 141: 473-481 (2013) https://doi.org/10.1016/j.foodchem.2013.03.033
- Yi B, Ka HJ, Kim MJ, Lee J. Effects of curcumin on the oxidative stability of oils depending on type of matrix, photosensitizers, and temperature. J. Am. Oil Chem. Soc. 92: 685-691 (2015) https://doi.org/10.1007/s11746-015-2639-y
- Zhang Z, Wang X, Yu J, Chen S, Ge H, Jiang L. Freeze-thaw stability of oil-in-water emulsions stabilized by soy protein isolate-dextran conjugates. LWT-Food Sci. Technol. 78: 241-249 (2017) https://doi.org/10.1016/j.lwt.2016.12.051