DOI QR코드

DOI QR Code

Stability of the enzyme-modified starch-based hydrogel model premix with curcumin during in vitro digestion

효소변형 전분기반 하이드로젤 모델 프리믹스 내 탑재된 커큐민의 소화과정 중 안정성

  • Kang, Jihyun (Department of Biosystems Engineering, Seoul National University) ;
  • Rho, Shin-Joung (Center for Food and Bioconvergence, Seoul National University) ;
  • Lee, Jiyoung (Department of Biosystems Engineering, Seoul National University) ;
  • Kim, Yong-Ro (Department of Biosystems Engineering, Seoul National University)
  • 강지현 (서울대학교 바이오시스템공학과) ;
  • 노신정 (서울대학교 식품바이오융합연구소) ;
  • 이지영 (서울대학교 바이오시스템공학과) ;
  • 김용노 (서울대학교 바이오시스템공학과)
  • Received : 2021.04.30
  • Accepted : 2021.06.04
  • Published : 2021.08.31

Abstract

In this study, the effect of enzyme-modified starch used in the preparation of filled hydrogel powder loaded with curcumin (FHP) on redispersibility, thermal and UV stability, and curcumin retention during in vitro digestion was investigated. FHP maintained stability without layer separation when redispersed and showed more stability against UVB than the emulsion powder (EMP). There was no significant difference in the chemical stability of curcumin between rice starch-based filled hydrogel powder (RS-FHP) and enzyme-modified starch-based filled hydrogel powder (GS-FHP). However, the gel matrix of GS-FHP maintained greater stability of lipid droplets in the stomach compared to RS-FHP, thereby improving the retention rate of curcumin after in vitro digestion. GS-FHP could be used as a novel material for developing premixes that require stable formulation and maintenance of functional substances, as it can increase the dispersion stability and retention rate of functional substances after digestion.

본 연구에서는 커큐민 함유 에멀션의 안정성을 위해 필드하이드로젤로 쌀전분(RS), 1시간 효소처리한 전분(1GS), 24시간 효소처리한 전분(24GS), 96시간 효소처리한 전분(96GS)을 사용하였으며 이를 이용한 모델 프리믹스로 커큐민 탑재 필드하이드로젤 분말(FHP)을 제조하여 탑재된 커큐민의 안정성 및 in vitro 소화 후 커큐민 보유율의 변화를 관찰하였다. FHP는 커큐민 함유 에멀션분말(EMP)과 비교하여 재분산시 크리밍 현상없이 분산안전성을 보여주었다. 재분산 하이드로젤은 고온에서 녹으면서 오히려 액적(droplet)의 유착(coalescence)과 응집(flocculation)이 가속화되어 에멀션에 비해 열안정성이 떨어졌으나 UV 안정성은 RS-FHP와 1GS-FHP에서 유의적인 커큐민 보호 효과를 나타냈다. GS-FHP는 in vitro 소화 중 기름방울의 응집 및 유착이 발견되지 않았으며 소화 후 에멀션의 유상에 용해된 커큐민을 성공적으로 보호함을 확인하였다. 따라서, GS-FHP는 분말형태 프리믹스 개발에 새로운 소재로 사용 가능할 것이며 커큐민 외에 다른 다양한 소수성 기능성물질에 대해서도 적용을 확장할 수 있을것으로 생각된다.

Keywords

Acknowledgement

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행되었으며 이에 감사드립니다(No. 2019R1A2C1010708; No. 2020R1A2C1015028).

References

  1. Adelmann H, Binks BP, Mezzenga R. Oil powders and gels from particle-stabilized emulsions. Langmuir 28: 1694-1697 (2012) https://doi.org/10.1021/la204811c
  2. Ahmed K, Li Y., McClements DJ, Xiao H. Nanoemulsion-and emulsion-based delivery systems for curcumin: encapsulation and release properties. Food Chem. 132: 799-807 (2012) https://doi.org/10.1016/j.foodchem.2011.11.039
  3. Anwar SH, Kunz B. The influence of drying methods on the stabilization of fish oil microcapsules: Comparison of spray granulation, spray drying, and freeze drying. J. Food Eng. 105: 367-378 (2011) https://doi.org/10.1016/j.jfoodeng.2011.02.047
  4. Biduski B, da Silva WMF, Colussi R, El Halal SLDM, Lim LT, Dias ARG, de Rosa Zavareze E. Starch hydrogels: The influence of the amylose content and gelatinization method. Int. J. Biol. Macromol. 113: 443-449 (2018) https://doi.org/10.1016/j.ijbiomac.2018.02.144
  5. Binks BP (Ed). Modern aspects of emulsion science. Royal Society of Chemistry, Cambridge (1998)
  6. Cano-Higuita D, Malacrida C, Telis V. Stability of curcumin microencapsulated by spray and freeze drying in binary and ternary matrices of maltodextrin, gum arabic and modified starch. J. Food Process. Preserv. 39: 2049-2060 (2015) https://doi.org/10.1111/jfpp.12448
  7. Carpenter J, George S, Saharan VK. Curcumin encapsulation in multilayer oil-in-water emulsion: synthesis using ultrasonication and studies on stability and antioxidant and release activities. Langmuir. 35: 10866-10876 (2019). https://doi.org/10.1021/acs.langmuir.9b01523
  8. Christensen KL, Pedersen GP, Kristensen HG. Preparation of redispersible dry emulsions by spray drying. Int. J. Pharm. 212: 187-194 (2001) https://doi.org/10.1016/S0378-5173(00)00596-2
  9. Dai L, Li R, Wei Y, Sun C, Mao L, Gao Y. Fabrication of zein and rhamnolipid complex nanoparticles to enhance the stability and in vitro release of curcumin. Food Hydrocoll. 77: 617-628 (2018) https://doi.org/10.1016/j.foodhyd.2017.11.003
  10. Dickinson E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems. Food Hydrocoll. 17: 25-39 (2003) https://doi.org/10.1016/S0268-005X(01)00120-5
  11. Dickinson E. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll. 23: 1473-1482 (2009) https://doi.org/10.1016/j.foodhyd.2008.08.005
  12. Fioramonti SA, Rubiolo AC, Santiago LG. Characterisation of freezedried flaxseed oil microcapsules obtained by multilayer emulsions. Powder Technol. 319: 238-244 (2017) https://doi.org/10.1016/j.powtec.2017.06.052
  13. Ghaleshahi AZ, Rajabzadeh G. The influence of sodium alginate and genipin on physico-chemical properties and stability of WPI coated liposomes. Food Res. Int. 130: 108966 (2020) https://doi.org/10.1016/j.foodres.2019.108966
  14. Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol. Rev. 66: 222-307 (2014) https://doi.org/10.1124/pr.110.004044
  15. Ismail H, Irani M, Ahmad Z. Starch-based hydrogels: present status and applications. Int. J. Polym. Mater. Po. 62: 411-420 (2013) https://doi.org/10.1080/00914037.2012.719141
  16. Ismail YA, Martinez JG, Al Harrasi AS, Kim SJ, Otero TF. Sensing characteristics of a conducting polymer/hydrogel hybrid microfiber artificial muscle. Sens. Actuators B Chem. 160: 1180-1190 (2011) https://doi.org/10.1016/j.snb.2011.09.044
  17. Ivanov IB, Danov K, Kralchevsky PA. Flocculation and coalescence of micron-size emulsion droplets. Colloids Surf. A. 152: 161-182 (1999) https://doi.org/10.1016/S0927-7757(98)00620-7
  18. Jiang T, Liao W, Charcosset C. Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Res. Int. 13: 109035 (2020) https://doi.org/10.1016/j.foodres.2020.109035
  19. Kang J, Kim YH, Choi SJ, Rho SJ, Kim YR. Improving the stability and curcumin retention rate of curcumin-loaded filled hydrogel prepared using 4αGTase-treated rice starch. Foods, 10: 150 (2021) https://doi.org/10.3390/foods10010150
  20. Kaushik V, Roos YH. Limonene encapsulation in freeze-drying of gum Arabic-sucrose-gelatin systems. LWT-Food Sci. Technol. 40: 1381-1391 (2007) https://doi.org/10.1016/j.lwt.2006.10.008
  21. Kowalczyk A, Fau M, Karbarz M, Donten M, Stojek Z, Nowicka AM. Hydrogel with chains functionalized with carboxyl groups as universal 3D platform in DNA biosensors. Biosens. Bioelectron. 54: 222-228 (2014) https://doi.org/10.1016/j.bios.2013.11.017
  22. Lee BH, Choi HA, Kim MR, Hong J. Changes in chemical stability and bioactivities of curcumin by ultraviolet radiation. Food Sci. Biotechnol. 22: 279-282 (2013) https://doi.org/10.1007/s10068-013-0038-4
  23. Lee KY, Kim YR, Park KH, Lee HG. Effects of α-glucanotransferase treatment on the thermo-reversibility and freeze-thaw stability of a rice starch gel. Carbohydr. Polym. 63: 347-354 (2006) https://doi.org/10.1016/j.carbpol.2005.08.050
  24. Li M, Ma Y, Cui J. Whey-protein-stabilized nanoemulsions as a potential delivery system for water-insoluble curcumin. LWTFood Sci. Technol. 59: 49-58 (2014)
  25. Li Zl, Peng SF, Chen X, Zhu YQ, Zou LQ, Liu W, Liu CM. Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility. Food Res. Int. 108: 246-253 (2018) https://doi.org/10.1016/j.foodres.2018.03.048
  26. Li Z, Shi M, Li N, Xu R. Application of functional biocompatible nanomaterials to improve curcumin bioavailability. Front. Chem. 8: 929 (2020)
  27. Li J, Shin GH, Lee IW, Chen X, Park HJ. Soluble starch formulated nanocomposite increases water solubility and stability of curcumin. Food Hydrocoll. 56: 41-49 (2016) https://doi.org/10.1016/j.foodhyd.2015.11.024
  28. Liu F, Chen Q, Kang Z, Pan W, Zhang D, Wang L. Non-Fourier heat conduction in oil-in-water emulsions. Int. J. Heat Mass Transf. 135: 323-330 (2019) https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.105
  29. Liu F, Ma D, Luo X, Zhang Z, He L, Gao Y, McClements DJ. Fabrication and characterization of protein-phenolic conjugate nanoparticles for co-delivery of curcumin and resveratrol. Food Hydrocoll. 79: 450-461 (2018) https://doi.org/10.1016/j.foodhyd.2018.01.017
  30. Lopez-Pena CL, Zheng B, Sela DA, Decker EA, Xiao H, McClements DJ. Impact of ε-polylysine and pectin on the potential gastrointestinal fate of emulsified lipids: In vitro mouth, stomach and small intestine model. Food Chem. 192: 857-864 (2016) https://doi.org/10.1016/j.foodchem.2015.07.054
  31. Mao L, Miao S. Structuring food emulsions to improve nutrient delivery during digestion. Food Eng. Rev. 7: 439-451 (2015) https://doi.org/10.1007/s12393-015-9108-0
  32. McClements DJ. Emulsion design to improve the delivery of functional lipophilic components. Annu. Rev. Food Sci. 1: 241-269 (2010) https://doi.org/10.1146/annurev.food.080708.100722
  33. McClements DJ. Food emulsion: Principles, practices, and techniques, 3nd edn. CRC Press, Inc., Boca Raton, FL, USA. pp. 289-373 (2015)
  34. McClements DJ, Decker EA, Park Y. Controlling lipid bioavailability through physicochemical and structural approaches. Crit. Rev. Food Sci. Nutr. 49: 48-67 (2009) https://doi.org/10.1080/10408390701764245
  35. McClements DJ, Li Y. Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Adv. Colloid Interface Sci. 159: 213-228 (2010) https://doi.org/10.1016/j.cis.2010.06.010
  36. Malik P, Singh M. Study of curcumin antioxidant activities in robust oil-water nanoemulsions. New J. Chem. 41: 12506-12519 (2017) https://doi.org/10.1039/C7NJ02612A
  37. Mohammadian M, Salami M, Momen S, Alavi F, Emam-Djomeh Z, Moosavi-Movahedi AA. Enhancing the aqueous solubility of curcumin at acidic condition through the complexation with whey protein nanofibrils. Food Hydrocoll. 87: 902-914 (2019) https://doi.org/10.1016/j.foodhyd.2018.09.001
  38. Mohan PK, Sreelakshmi G, Muraleedharan C, Joseph R. Water soluble complexes of curcumin with cyclodextrins: Characterization by FT-Raman spectroscopy. Vib. Spectrosc. 62: 77-84 (2012) https://doi.org/10.1016/j.vibspec.2012.05.002
  39. Mun S, Choi Y, Park KH, Shim JY, Kim YR. Influence of environmental stresses on the stability of W/O/W emulsions containing enzymatically modified starch. Carbohydr. Polym. 92: 1503-1511 (2013) https://doi.org/10.1016/j.carbpol.2012.10.050
  40. Mun S, Choi Y, Park S, Surh J, Kim YR. Release properties of geltype W/O/W encapsulation system prepared using enzymaticallymodified starch. Food Chem. 157: 77-83. (2014) https://doi.org/10.1016/j.foodchem.2014.02.017
  41. Mun S, Kim YR, McClements DJ. Control of β-carotene bioaccessibility using starch-based filled hydrogels. Food Chem. 173: 454-461 (2015) https://doi.org/10.1016/j.foodchem.2014.10.053
  42. Mun S, Park S, Kim YR, McClements DJ. Influence of methylcellulose on attributes of β-carotene fortified starch-based filled hydrogels: Optical, rheological, structural, digestibility, and bioaccessibility properties. Food Res. Int. 87: 18-24 (2016) https://doi.org/10.1016/j.foodres.2016.06.008
  43. No J, Shin M, Mun S. Preparation of functional rice cake by using β-carotene-loaded emulsion powder. J. Food Sci. Technol. 57: 4514-4523 (2020) https://doi.org/10.1007/s13197-020-04488-1
  44. Pan Y, Xie QT, Zhu J, Li XM, Meng R, Zhang B, Chen HQ, Jin ZY. Study on the fabrication and in vitro digestion behavior of curcumin-loaded emulsions stabilized by succinylated whey protein hydrolysates. Food Chem. 287: 76-84 (2019) https://doi.org/10.1016/j.foodchem.2019.02.047
  45. Park HR, Rho SJ, Kim YR. Solubility, stability, and bioaccessibility improvement of curcumin encapsulated using 4-α-glucanotransferase-modified rice starch with reversible pH-induced aggregation property. Food Hydrocoll. 95: 19-32 (2019) https://doi.org/10.1016/j.foodhyd.2019.04.012
  46. Park HR, Kang J, Rho SJ, Kim YR. Structural and physicochemical properties of enzymatically modified rice starch as influenced by the degree of enzyme treatment. J. Carbohydr. Chem. 39: 250-266 (2020) https://doi.org/10.1080/07328303.2020.1788574
  47. Park S, Kim YR. Clean label starch: Production, physicochemical characteristics, and industrial applications. Food Sci. Biotechnol. 30: 1-17 (2021) https://doi.org/10.1007/s10068-020-00834-3
  48. Park S, Mun S, Kim YR. Effect of xanthan gum on lipid digestion and bioaccessibility of β-carotene-loaded rice starch-based filled hydrogels. Food Res. Int. 105: 440-445 (2018) https://doi.org/10.1016/j.foodres.2017.11.039
  49. Pinheiro AC, Coimbra MA, Vicente A A. In vitro behaviour of curcumin nanoemulsions stabilized by biopolymer emulsifiers-Effect of interfacial composition. Food Hydrocoll. 52: 460-467 (2016) https://doi.org/10.1016/j.foodhyd.2015.07.025
  50. Porter CJ, Kaukonen AM, Boyd BJ, Edwards GA, Charman WN. Susceptibility to lipase-mediated digestion reduces the oral bioavailability of danazol after administration as a medium-chain lipid-based microemulsion formulation. Pharm. Res. 21: 1405-1412 (2004) https://doi.org/10.1023/B:PHAM.0000036914.22132.cc
  51. Porter CJ, Pouton CW, Cuine JF, Charman WN. Enhancing intestinal drug solubilisation using lipid-based delivery systems. Adv. drug deliv. Rev. 60: 673-691 (2008) https://doi.org/10.1016/j.addr.2007.10.014
  52. Qian C, Decker EA, Xiao H, McClements DJ. Nanoemulsion delivery systems: Influence of carrier oil on β-carotene bioaccessibility. Food Chem. 135: 1440-1447 (2012) https://doi.org/10.1016/j.foodchem.2012.06.047
  53. Qiu F, Li Y, Yang D, Li X, Sun P. Biodiesel production from mixed soybean oil and rapeseed oil. Appl. Energy, 88: 2050-2055 (2011) https://doi.org/10.1016/j.apenergy.2010.12.070
  54. Rousseau D. Fat crystals and emulsion stability-a review. Food Res. Int. 33: 3-14 (2000) https://doi.org/10.1016/S0963-9969(00)00017-X
  55. Saari H, Wahlgren M, Rayner M, Sjoo M, Matos M. A comparison of emulsion stability for different OSA-modified waxy maize emulsifiers: Granules, dissolved starch, and non-solvent precipitates. PloS one. 14: e0210690 (2019) https://doi.org/10.1371/journal.pone.0210690
  56. Sari TP, Mann B, Kumar R, Singh RRB, Sharma R, Bhardwaj M, Athira S. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocoll. 43: 540-546 (2015) https://doi.org/10.1016/j.foodhyd.2014.07.011
  57. Silva KCG, Bourbon AI, Pastrana L, Sato ACK. Emulsion-filled hydrogels for food applications: influence of pH on emulsion stability and a coating on microgel protection. Food Funct. 11: 8331-8341 (2020) https://doi.org/10.1039/D0FO01198C
  58. Sousdaleff M, Baesso ML, Neto AM, Nogueira AC, Marcolino VA, Matioli G. Microencapsulation by freeze-drying of potassium norbixinate and curcumin with maltodextrin: stability, solubility, and food application. J. Agri. Food Chem. 61: 955-965 (2013) https://doi.org/10.1021/jf304047g
  59. Sun C, Xu C, Mao L, Wang D, Yang J, Gao Y. Preparation, characterization and stability of curcumin-loaded zein-shellac composite colloidal particles. Food Chem. 228: 656-667 (2017) https://doi.org/10.1016/j.foodchem.2017.02.001
  60. Suresh D, Gurudutt K, Srinivasan K. Degradation of bioactive spice compound: curcumin during domestic cooking. Eur. Food Res. Technol. 228: 807-812 (2009) https://doi.org/10.1007/s00217-008-0993-9
  61. Tcholakova S, Denkov ND, Ivanov IB, Campbell B. Coalescence stability of emulsions containing globular milk proteins. Adv. Colloid Interface Sci. 123: 259-293 (2006) https://doi.org/10.1016/j.cis.2006.05.021
  62. Tonnesen HH, Karlsen J, van Henegouwen GB. Studies on curcumin and curcuminoids VIII. Photochemical stability of curcumin. Z. Lebensm. Unters. Forsch. 183: 116-122 (1986) https://doi.org/10.1007/BF01041928
  63. Wang MS, Chaudhari A, Pan Y, Young S, Nitin N. Controlled release of natural polyphenols in oral cavity using starch Pickering emulsion. MRS Online Proceedings Library, 1688: 7-11 (2014)
  64. Wang YJ, Pan MH, Cheng AL, Lin LI, Ho YS, Hsieh CY, Lin JK. Stability of curcumin in buffer solutions and characterization of its degradation products. J. Pharm. Biomed. Anal. 15: 1867-1876 (1997) https://doi.org/10.1016/S0731-7085(96)02024-9
  65. Wang L, Wang YJ. Comparison of protease digestion at neutral pH with alkaline steeping method for rice starch isolation. Cereal Chem. 78: 690-692 (2001) https://doi.org/10.1094/CCHEM.2001.78.6.690
  66. Xie J, Luo Y, Chen Y, Liu Y, Ma Y, Zheng Q, Yue P, Yang M. Redispersible Pickering emulsion powder stabilized by nanocrystalline cellulose combining with cellulosic derivatives. Carbohydr. Polym. 213: 128-137 (2019) https://doi.org/10.1016/j.carbpol.2019.02.064
  67. Yang Y, McClements DJ. Vitamin E bioaccessibility: Influence of carrier oil type on digestion and release of emulsified α-tocopherol acetate. Food Chem. 141: 473-481 (2013) https://doi.org/10.1016/j.foodchem.2013.03.033
  68. Yi B, Ka HJ, Kim MJ, Lee J. Effects of curcumin on the oxidative stability of oils depending on type of matrix, photosensitizers, and temperature. J. Am. Oil Chem. Soc. 92: 685-691 (2015) https://doi.org/10.1007/s11746-015-2639-y
  69. Zhang Z, Wang X, Yu J, Chen S, Ge H, Jiang L. Freeze-thaw stability of oil-in-water emulsions stabilized by soy protein isolate-dextran conjugates. LWT-Food Sci. Technol. 78: 241-249 (2017) https://doi.org/10.1016/j.lwt.2016.12.051