DOI QR코드

DOI QR Code

Antioxidant and Anti-inflammatory activity of Silvetia siliquosa extract

Silvetia siliquosa 추출물의 항산화 및 항염효과

  • 김경숙 (아이리스 피부미용아카데미) ;
  • 김숙희 (건국대학교 미래지식교육원 학점은행제 K뷰티산업융합학전공)
  • Received : 2021.06.25
  • Accepted : 2021.08.20
  • Published : 2021.08.28

Abstract

In this study, the antioxidant and anti-inflammatory properties of Silvetia siliquosa extracts were identified. Antioxidant experiments included polyphenol concentration measurements, flavonoid concentration measurements, DPPH experiments, ABTS experiment NO experiments, and FRAP experiments. For polyphenols, 54.85 ± 2.79 mg/g was shown. Flavonoids showed 18.70 ± 5.26 mg/g. The DPPH experiment showed an antioxidant function of 3.950 mg ascorbic acid/g extract, the ABTS experiment showed an antioxidant function of 7.418 mg ascorbic acid/g extract, and the NO experiment showed an antioxidant function of 6.056 mg ascorbic acid/g extract. In FRAP, 1 mg of the moxibustion extract showed a reduction of 3.633 ± 0.280 ㎍ of ascorbic acid. In the meantime, cell experiments showed cytotoxicity and anti-inflammatory functions against inflammation induced by LPS. In cytotoxicity experiments, Silvetia siliquosa extracts showed a cell survival rate of more than 80% at all concentrations, and an inflammatory inhibition of 26.94±0.52% at a concentration of 100 ㎍/mL. These results indicate that Silvetia siliquosa extract is available as an anti-inflammatory cosmetic material.

본 연구에서는 뜸부기 추출물의 항산화능 및 항염능을 확인하였다. 항산화능 실험에는 폴리페놀 농도 측정, 플라보노이드 농도 측정, DPPH 실험, ABTS 실험, NO 실험, FRAP 실험을 실시하였다. 폴리페놀의 경우 54.85±2.79 mg/g으로 나타났다. 플라보노이드의 경우 18.70±5.26 mg/g으로 나타났다. DPPH 실험에서는 3.950 mg ascorbic acid / g extract의 항산화능을 나타내었으며, ABTS 실험에서는 7.418 mg ascorbic acid / g extract의 항산화능을 나타내었으며, NO 실험에서는 6.056 mg ascorbic acid / g extract의 항산화능을 나타내었다. FRAP에서는 뜸부기 추출물의 1 mg이 ascorbic acid 3.633±0.280 ㎍의 환원력을 보였다. 한편 세포실험에서는 세포 독성과 LPS로 유도된 염증에 대한 항염능을 알아보았다. 세포독성의 경우 모든 농도에서 80%이상의 세포 생존률을 보였으며, NO 생성 억제능의 경우 100 ㎍/mL 농도에서 26.94±0.52%의 염증 억제능을 보여 뜸부기 추출물이 항염능을 가진 화장품 원료로서 사용 가능함을 보였다.

Keywords

References

  1. A. Ratz-Lyko, J. Arct & K. Pytkowska. (2012). Methods for evaluation of cosmetic antioxidant capacity. Skin Research and Technology, 18(4), 421-430. DOI : 10.1111/j.1600-0846.2011.00588.x
  2. M. Schieber & N. S. Chandel. (2014). ROS function in redox signaling and oxidative stress. Current biology, 24(10), R453-R462. DOI : 10.1016/j.cub.2014.03.034
  3. I. H. Ahn. (2017). The Aesthetic Universality of Makeup by Evolutionary Psychological Theory-Focusing on the Origin of Ancient Civilizations in Four Areas-. The journal of Korean society of design culture, 23(1), 323-335. https://doi.org/10.18208/ksdc.2017.23.1.323
  4. H. Masaki. (2010). Role of antioxidants in the skin: anti-aging effects. Journal of dermatological science, 58(2), 85-90. DOI:10.1016/j.jdermsci.2010.03.003
  5. I. Wanke, Y. Skabytska, B. Kraft, A. Peschel, T. Biedermann & B. Schittek. (2013). S taphylococcus aureus skin colonization is promoted by barrier disruption and leads to local inflammation. Experimental dermatology, 22(2), 153-155. DOI : 10.1111/exd.12083
  6. J. Bonaventure, M. J. Domingues & L. Larue. (2013). Cellular and molecular mechanisms controlling the migration of melanocytes and melanoma cells. Pigment cell & melanoma research, 26(3), 316-325. DOI : 10.1039/c4fo00970c
  7. O. Bossi, M. Gartsbein, M. Leitges, T. Kuroki, S. Grossman & T. Tennenbaum. (2008). UV irradiation increases ROS production via PKCδ signaling in primary murine fibroblasts. Journal of cellular biochemistry, 105(1), 194-207. DOI : 10.1016/j.saa.2005.10.013
  8. T. Herrling, K. Jung & J. Fuchs. (2008). The role of melanin as protector against free radicals in skin and its role as free radical indicator in hair. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(5), 1429-1435. DOI : 10.1016/j.saa.2007.09.030
  9. J. P. Ebanks, R. R. Wickett & R. E. Boissy. (2009). Mechanisms regulating skin pigmentation: the rise and fall of complexion coloration. International Journal of Molecular Sciences, 10(9), 4066-4087. DOI : 10.3390/ijms10094066
  10. E. K. Hwang, H. C. Yu, D. S. Ha & C. S. Park. (2015). Growth and Maturation Period of Silvetia siliquosa in the Natural Population in Jindo, South Korea. Korean Journal of Fisheries and Aquatic Sciences, 48(5), 745-751. DOI : 10.5657/KFAS.2015.0745
  11. E. M. Balboa, E. Conde, A. Moure, E. Falque & H. Dominguez. (2013). In vitro antioxidant properties of crude extracts and compounds from brown algae. Food chemistry, 138(2-3), 1764-1785. DOI : 10.1016/j.foodchem.2012.11.026
  12. L. O'Sullivan, B. Murphy, P. McLoughlin, P. Duggan, P. G. Lawlor, H. Hughes & G. F. Gardiner. (2010). Prebiotics from marine macroalgae for human and animal health applications. Marine drugs, 8(7), 2038-2064. DOI : 10.3390/md8072038
  13. C. Deville, M. Gharbi, G. Dandrifosse & O. Peulen. (2007). Study on the effects of laminarin, a polysaccharide from seaweed, on gut characteristics. Journal of the Science of Food and Agriculture, 87(9), 1717-1725. DOI : 10.1002/jsfa.2901
  14. J. I. Choi, H. J. Kim & J. W. Lee. (2011). Structural feature and antioxidant activity of low molecular weight laminarin degraded by gamma irradiation. Food chemistry, 129(2), 520-523. DOI : 10.1016/j.foodchem.2011.03.078
  15. A. M. Gamal-Eldeen, E. F. Ahmed & M. A. Abo-Zeid. (2009). In vitro cancer chemopreventive properties of polysaccharide extract from the brown alga, Sargassum latifolium. Food and Chemical Toxicology, 47(6), 1378-1384. DOI : 10.1016/j.fct.2009.03.016
  16. S. Ananthi, H. R. B. Raghavendran, A. G. Sunil, V. Gayathri, G. Ramakrishnan & H. R. Vasanthi. (2010). In vitro antioxidant and in vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornata (Marine Brown Alga). Food and chemical toxicology, 48(1), 187-192. DOI : 10.1016/j.fct.2009.09.036
  17. A. Pekal & K. Pyrzynska. (2014). Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods, 7(9), 1776-1782. DOI : 10.1007/s12161-014-9814-x
  18. M. S. Blois. (1958). Antioxidant determinations by the use of a stable free radical. Nature, 181(4617), 1199-1200. https://doi.org/10.1038/1811199a0
  19. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang & C. Rice-Evans. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free radical biology and medicine, 26(9-10), 1231-1237. DOI : 10.1016/S0891-5849(98)00315-3
  20. G. C. Jagetia & M. S. Baliga. (2004). The evaluation of nitric oxide scavenging activity of certain Indian medicinal plants in vitro: a preliminary study. Journal of Medicinal Food, 7(3), 343-348. DOI : 10.4014/kjmb.1409.09006
  21. B. Alexander, D. J. Browse, S. J. Reading & I. S. Benjamin. (1999). A simple and accurate mathematical method for calculation of the EC50. Journal of pharmacological and toxicological methods, 41(2-3), 55-58. DOI : 10.1016/S1056-8719(98)00038-0
  22. C. S. Kwak, S. A. Kim & M. S. Lee. (2005). The Correlation of Antioxidative Effects of 5 Korean Common Edible Seaweeds and Total Polyphenol Content. Journal of the Korean Society of Food Science and Nutrition, 34(8), 1143-1150. DOI : 10.3746/jkfn.2005.34.8.1143
  23. Z. Demirel, F. F. Yilmaz-Koz, U. N. Karabay-Yavasoglu, G. Ozdemir & A. Sukatar. (2009). Antimicrobial and antioxidant activity of brown algae from the Aegean Sea. Journal of the Serbian Chemical Society, 74(6), 619-628. DOI : 10.2298/JSC0906619D
  24. H. A. Monsur. (2011). Anti-inflammatory compounds of macro algae origin: A review. Journal of Medicinal Plants Research, 5(33), 7146-7154. DOI : 10.5897/JMPRX11.018
  25. A. Cumashi, N. A. Ushakova, M. E. Preobrazhenskaya, A. D'Incecco, A. Piccoli, L. Totani & N. E. Nifantiev. (2007). A comparative study of the anti-inflammatory, anticoagulant, antiangiogenic, and antiadhesive activities of nine different fucoidans from brown seaweeds. Glycobiology, 17(5), 541-552. DOI : 10.1093/glycob/cwm014