
lable at ScienceDirect

Nuclear Engineering and Technology 53 (2021) 258e265
Contents lists avai
Nuclear Engineering and Technology

journal homepage: www.elsevier .com/locate/net
Original Article
Application of sigmoidal optimization to reconstruct nuclear medicine
image: Comparison with filtered back projection and iterative
reconstruction method

Han-Back Shin a, Moo-Sub Kim b, Martin Law c, Shih-Kien Djeng c, Min-Geon Choi b,
Byung Wook Choi d, Sungmin Kang d, Dong-Wook Kim a, Tae Suk Suh b, **, 1,
Do-Kun Yoon b, *, 1

a Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University, College of Medicine, Seoul, 03722, South Korea
b Department of Biomedical Engineering and Research Institute of Biomedical, Engineering, College of Medicine, Catholic University of Korea, Seoul, 06591,
South Korea
c Proton Therapy Pte Ltd, 1 Biopolis Drive, 138622, Singapore
d Department of Nuclear Medicine, Daegu Catholic University Medical Center, Catholic University of Daegu School of Medicine, Daegu, 42471, South Korea
a r t i c l e i n f o

Article history:
Received 18 March 2020
Received in revised form
19 June 2020
Accepted 24 June 2020
Available online 27 July 2020

Keywords:
Sigmoid function
Profile optimization
PET
SPECT
Monte Carlo simulation
* Corresponding author.
** Corresponding author.

E-mail addresses: suhsanta@catholic.ac.kr (T.S.
(D.-K. Yoon).

1 These authors have contributed equally to this w

https://doi.org/10.1016/j.net.2020.06.029
1738-5733/© 2020 Korean Nuclear Society, Published
licenses/by-nc-nd/4.0/).
a b s t r a c t

High levels for noise and a loss of true signal make the quantitative interpretation of nuclear medicine
(NM) images difficult. An application of profile optimization using a sigmoidal function in this study was
used to acquire the NM images with high quality. And the images were acquired by using three kinds of
reconstruction method using each same sinogram: a standard filtered back-projection (FBP), an iterative
reconstruction (IR) technique, and the sigmoidal function profile optimization (SFPO). Comparison of
image according to reconstruction method was performed to show a superiority of the SFPO for imaging.
The images reconstructed by using the SFPO showed an average of 1.49 times and of 1.17 times better in
contrast than the results obtained using the standard FBP and the IR technique, respectively. Higher
signal to noise ratios were obtained as an average of 12.30 times and of 3.77 times than results obtained
using the standard FBP and the IR technique, respectively. This study confirms that reconstruction with
SFPO (vs FBP and vs IR) can lead to better lesion detectability and characterization with noise reduction. It
can be developed for future reconstruction technique for the NM imaging.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nuclear medicine (NM) imaging technique is a representative
molecular imaging method using of a radiopharmaceutical com-
pound, which may be accumulated into a tumor region after pa-
tient injection. The NM images can be then acquired with the use of
a single photon emission computed tomography (SPECT) or of a
positron emission tomography (PET) [1]. This detected gamma ray
events are used to generate a sinogram representing the raw data
for the NM images [2], the image reconstructions of which are
Suh), dbsehrns@naver.com
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by Elsevier Korea LLC. This is an
commonly performed with the use of standard filtered back pro-
jection (FBP) or of the iterative type ordered subset expectation
maximization (OSEM) algorithm in the commercialized product
[2]. The type of the image reconstruction algorithms can affect the
quality and quantification of the reconstructed NM images. More-
over, the acquisition time of the images can be dependent upon
these type of the algorithm [3]. For this reason, there has been
continuous development of the reconstruction algorithm in patient
imaging [4,5]. The representative conventional reconstruction al-
gorithm for the NM imaging is the standard FBP algorithm [6], in
which the blurring effect at the image edge can be removed by
using a specific filter. Nevertheless, the overall noise level
embedded within the image still remains. The high noise level and
the reduced signal level lead the difficulty for the image interpre-
tation. On the other hand, an iterative reconstructionmethod based
on the probability model such as the Poisson distribution has been
proposed for the innovative noise reduction [7e12]. When the
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Fig. 1. Geometric information for all four types of water phantoms including the cy-
lindrical column of the radioisotope region (black circle) at z ¼ 0 plane for computer
simulation. Each radioisotope region is tagged as an alphabet from A to C (or D).
Phantom 1 and 2: PET phantoms, Phantom 3 and 4: SPECT phantoms.
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OSEM method is used to reconstruct the NM images, the signal
level is increased and noise level is decreased according to the
probability with the iterative works [13e18]. Because the OSEM
algorithm allows the distribution of the calculation for acquiring
the image by the assignment of the subset, the image acquisition
time can be reduced [3]. However, the problem regarding the signal
loss resulted from increasing number of iterations is still unsolved
even with the use of the graphic processing unit (GPU) to acquire
the NM images [19,20]. In order to solve the problem for the signal
loss, there have been a lot of trials in the field of medical imaging
[21e30]. Nevertheless, we propose to use a model of ‘loss function’
to acquire the NM image. Although the loss function is originally a
criterion of an evaluation to show an accuracy of a hypothesis for a
regression, these characteristics can be applied to change the spe-
cific arrangement to the ideal pattern [31]. The sigmoidal function,
being a curve with letter ‘S’ in shape, is a representative model of
the loss function. This sigmoidal function has been applied to
several research areas such as curve fitting and electronic signal
analysis [31,32]. The ideal pattern of the profile for the NM image
looks like a sharp sigmoidal function. If the rough profile from the
image can be changed as the ideal pattern such as the sharp
sigmoidal function with the ‘clear criteria’, the quality of the image
will be accordingly increased. However, in order to establish the
clear criteria, the information of a tendency should be required.
This tendency can be defined with the weighting parameter. The
specific weighting parameters to optimize the original values
should be extracted from large dataset [33e36]. Values of the curve
gradient along the sigmoidal function are used as reference values
for the weighting parameters and the NM image profiles will be
optimized accordingly. The re-arrangement of these optimized
profiles can reconstruct the NM images close to their true patterns.
The purpose of this study is to propose an image reconstruction
method using sigmoidal function and to compare the image quality
with that of the standard FBP as well as the iterative reconstruction
technique using the quantitative analysis.

2. Materials and methods

2.1. System description and data acquisition

To acquire a relation between the quality of NM images and
image acquisition technique, imaging machines of SPECT and PET
were simulated using the Monte Carlo n-particle extended simu-
lation code (MCNPX, Ver. 2.6.0, National Laboratory, Los Alamos
NM, USA). For both PET and SPECT scanners, lutetium-yttrium
oxyorthosilicate (LYSO, density ¼ 7.2 g/cm3) was used as the scin-
tillator material with size of 280 � 280 � 20 mm3 [26,27]. The
parallel hole collimator, composed of lead (density ¼ 11.3 g/cm3),
had 70 holes with 2mm diameter and 7mm septum height [19,29].
The PET detector was designed as a ring type geometry with the
same scintillation material as the SPECT detector. The size of the
detector was 20mm thickwith 400mm inner diameter. Therewere
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four kinds of water phantoms containing some cylindrical columns
with either 364 keV or 511 keV radioisotope content for computer
simulation. The number of the initial particles were 60 million per
one projection in the SPECT simulations (total 32 projections). And
the 1.92 billion initial particles were applied to the PET simulations.
According to the National Electrical Manufacturers Association
(NEMA), it is generally recommended that activity ratio between
radioisotope region and background area was 4:1 [30]. However, in
this study, radioisotopewas placed only in the cylindrical column to
minimize the effect of the background. Fig. 1 shows the detailed
information for the geometry of these four phantoms which con-
tained different cylindrical columns at different coordinates. The
black circles mean the regions of the radioisotopes. Correctly, there
are two kinds of the phantoms for the PET and two kinds of the
phantoms for SPECT. Whole process of the image acquisition has
been performed with MATLAB (2018b, Mathworks Inc., Sherborn,
MA, USA).
2.2. Application of standard FBP reconstruction

To acquire the NM images using the standard FBP, the sinogram
was firstly obtained from the PET and SPECT in the simulation. And
it was then computed the inverse Fourier transform of each pro-
jection profile (Eq. (1)) [1,2]:

p’¼ F�1½jkr jP� (1)

where jkr j is the high pass filter Ram-Lak, P is the projection file, F�1

is the inverse Fourier transform and p’ is the inverse Fourier
transform data. This process was applied to each k-space profile.
2.3. Application of GPU-based OSEM reconstruction

The NM imaging is of relatively low detection efficiency and
requires fast image reconstruction capability [13e18] for the clin-
ical application. In this study, OSEM algorithm with GPU (GPU-
based OSEM) was applied for fast image reconstruction (Eq. (2))
[19]:
where l is the image variable, Cij is the system matrix, Yi is the
count number of photons, Dn is the GPU domain length (horizontal
thread number), Dm is the GPU domain length (vertical thread
number). Because the SL is the ‘subset of part in sinogram’ with
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number L, the
P

i2 SL means whole range of sinogram. And the j is
a pixel number, the k is j - 1 pixel number, the i is the detector unit.

The image reconstruction using the GPU-based OSEM was
consistently performed with the 8 subsets and 5 iterations
throughout this study.

2.4. Application of sigmoidal function profile optimization

In the process of sigmoidal function profile optimization (SFPO),
the extracted profile from the simple spread image by the new
sinogram could be optimized and then be changed as the ideal
pattern of the profile. In order to optimize the profile, the
‘weighting parameters’ for each ‘region’ on the profile were
required. To obtain the weighting parameters, the five SPECT im-
ages and the five PET images were additionally simulated using the
same type of phantom with seven cylindrical columns of different
sizes (Fig. 2). In order to acquire different image combinations from
the reference phantoms, the signals for some specific regions were
turned on/off during computer simulation. The two true images for
both PET and SPECT, with all radioactive regions turned on, were
also simulated to compare with the sample images of the phantom.
The profiles were extracted from the all sample images according to
the applied true images. The 786 reference profiles were extracted
from the five reference SPECT images and from the five reference
PET images. After the transformation of the extracted reference
profile as the first derivative, the position of the reference profile
was matched with the true profile which is extracted from the
original phantom image. By comparing with the ideal patterns from
true profiles (Fig. 3a), indices of each value in the profile were
assigned as ‘signal region’ including the ‘plateau region’, ‘signal to
noise (S/N) interference’, and ‘noise region’ according to the height
of the differential profile. However, the actual differential curve
Fig. 2. Reference images for extracting the reference profiles. The water phantom
contained seven circles of different sizes and locations. Images for all radioisotope
regions included in the simulation were shown at top portion of the figure for both
SPECT and PET images. Images by turning specific signal on/off were used to get the
profiles, 5 images for SPECT and 5 images for PET were acquired from the reference
phantom.

Fig. 3. Schematic process of NM imaging using sigmoid function profile optimization.
To acquire the reference values for optimizing new profile, the 786 profiles acquired
from 5 SPECT images and 5 PET images were used to define the ‘region’ on the profile
(a). When the new sinogram is updated, it is changed as simple spread image (b). This
simple image is updated to be the optimized image according to weighting parameters
which is originated from the reference profiles. The final profile is close to ideal pattern
of profile. Through the re-arrangement of the optimized profiles, the optimized
reconstructed image is obtained (c). The downward arrow in the c does not match with
the below profiles. This arrow is demonstrated to explain the direction of the 1D
measurement at the moment for extracting the profiles from images.
looks like the curve in Fig. 3a. In that case, we are hard to correctly
distribute where the terminal point of the signal region is. From the
786 profiles, we manually compared the position of each signal
with the profiles of ideal pattern and analyzed the height of the
differential profiles. And we found candidates for the signal region.
Moreover, the clear signals were excluded from the candidates, the
left signals from the candidates were distributed as the ‘S/N inter-
ference’. Lastly, the other signals which didn’t be selected as the
candidates were distributed as ‘noise’. In this process, some in-
clinations to differentiate the groups were found. From these 786
reference profiles, the gradient values based on various regions of
signal, S/N interference, and noise were corresponding to the pro-
file inclination of 49.3�e90� (±1.2�), 49.2�e16.8� (±2.3�), and
0�e16.7� (±0.9�) respectively. In the case of the S/N interference, its
range started to rise to reach the signal region and vice versa.
Although a definition of the S/N interference was most difficult in
this study, we calculated the discrepancy values between the actual
image profile and the reference profile together with the acquired
average weighting parameters for S/N interference and signal re-
gion to be as an ideal pattern using sigmoidal function. And the
image acquisition needed the spread image from the new sinogram



Fig. 4. Reconstructed images using standard FBP (second column), GPU-based OSEM
(third column) and SFPO (fourth column) using the same sinogram with the four
phantoms of different coordinates for the radioisotope regions of same intensity (a and
b for PET imaging, c and d for SPECT imaging). The geometric information of each
phantom is reported at first column. FBP: filtered back projection, GPU: graphics
processing unit, OSEM: ordered subset expectation maximization, SFPO: sigmoidal
function profile optimization.
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without the application of any filters (Fig. 3b). The spread image
was an image acquired by the simple back-projection using the
sinogram without the application of any filters, processing. After
the acquisition of the spread image, the 1D image profiles were
extracted line by line with one direction on the image. In that case,
the shape of profile looks like a rough mountain at the region of
true signal. On the other hand, the profile of ideal pattern shows the
perpendicularly convex shape. The extracted image profiles from
the new spread image can be optimized by comparing with this
profile of ideal pattern. According to iteration step, the shape of the
rough mountain is gradually changing to the perpendicularly
convex shaped in Fig. 3c. And we found the specific weighting
parameters to optimize the profile according to the shape of the
sigmoidal function by manual comparison. There were three
weighting parametersWi (i ¼ 1 to 3) to optimize the profiles. These
weighting parameters would be multiplied to each value in the
original profile according to the updated process, and corre-
spondingly the updated profile would be changed as like a shape of
sigmoidal curve. The W1 (0.071 according to the slope) was
assigned to the noise region. If the gradient values were identified
to the noise region, the W1 was applied to the profile’s value as the
noise region’s index. The W2 (0.071e1.384 according to range from
16.8� to 90�) was assigned to S/N interference and signal region.
They were applied to the profile’s values at S/N interference’s and
signal region’s indices. These regions would then be changed like
middle point of the sigmoidal function. The last weighting
parameter wasW3 (1.066) was applied to the image plateau region.
The general transformation for the profile(r)new from the previous
profile P(r) is summarized as (Eq. (3)):

ProfileðrÞnew¼
8<
:

PðrÞ,W1 r within noise region
PðrÞ,W2 r within S=N & signal region
PðrÞ,W3 r within plateau region

(3)

where r was a pixel value in one profile.
This r could be assigned at any of the three regions according to

the conditions as above (Eq. (3)). The gradient of plateau regionwas
similar to the gradient of noise region. However, when the profile
was scanned, the gradients after (or before) the signal region was
regarded as noise region. With these weighting parameters, the
updated process was continuously iterated to achieve the true
images. The iterative process would terminate when the difference
of normalized signal intensity between the maximum value in S/N
interference and minimum value in S/N interference was above the
50% inflection point of the sigmoidal curve. Each image was needed
an average of 3e5 iterations. Actually, there is a clear difference
between the standard FBP and the method what we proposed. The
image reconstruction using the standard FBP has a filter process on
the sinogram after Fourier transformation. However, our proposed
method does not include neither the filter process nor the Fourier
transformation. The proposed method is originated from the opti-
mization of the profile on the 1D spatial space. Basically, the opti-
mization should have criteria to deduct the best solution, these
criteria have been extracted from the 786 profiles acquired from the
10 reference images.

2.5. Image analysis

To quantitatively analyze the region containing radioisotope, the
noise, contrast and signal-to-noise ratio (SNR) were acquired from
using the region of interest (ROI) for each region and for the
background. We set the ROIs according to the number of radio-
isotope regions of each phantom. The size of each ROI was set as
70% of physical diameter of radioisotope region. The number and
size of ROI on background region were also set equal to those of
ROIs on radioisotope region. The position was similar to that of the
radioisotope region, and the measured values were averaged. The
contrast and SNR were calculated as (Eqs. (4) and (5)):

Contrast¼ jS� Bj
jSþ Bj (4)

SNR¼ S
BSD

(5)

where S was the average signal in the region containing the
radioisotope, Bwas the average background signal, and BSD was the
standard deviation of the background.

Secondly, the full width half maximum (FWHM) was measured
from each peak on the image profiles acquired from the recon-
structed images according to the type of the reconstruction algo-
rithm. When the profiles were normalized as the highest point on
the peak with 100%, the distance between the former point of 50%
and the latter point of 50% on the peak was calculated. Moreover, in
order to evaluate the degree of the dispersion, the penumbra was
also measured from the all images. All of images including even
reference imageswere adjusted as 210� 210matrixwith the size of
40.9 cm � 40.9 cm. Thus, the size of the one pixel on the image was
1.95 mm. The number of pixels from 20% to 80% of relative signal
intensity on the half of the peak was counted to measure the
penumbra.

Lastly, both the sizes of each regions and the coordinate of each
region on the reconstructed images were measured. Although the
size of signal is hard to be defined on the reconstructed image due
to the penumbra, in order to exclude the effect of the penumbra,
the criteria for defining range of the sizewas fixed as over the signal



Table 1
Contrast and normalized signal to noise ratio (SNR) for each region having a
radioisotope as the type of the reconstruction algorithms. FBP: filtered back pro-
jection, GPU: graphics processing unit, OSEM: ordered subset expectation maxi-
mization, SFPO: sigmoidal function profile optimization.

Contrast values Normalized SNR

GPU-based SFPO GPU-based SFPO

Phantom Region FBP OSEM FBP OSEM

1 A 0.78 0.83 0.91 5.62 57.57 93.46
B 0.77 0.85 0.92 5.47 64.81 99.39
C 0.77 0.84 0.92 5.54 59.02 97.05
D 0.77 0.85 0.92 5.35 63.94 100.00

2 A 0.65 0.86 0.90 9.12 13.49 89.70
B 0.62 0.89 0.91 8.23 17.71 100.00
C 0.64 0.78 0.86 8.56 8.01 66.58

3 A 0.76 0.91 0.96 17.37 19.69 100.00
B 0.62 0.79 0.92 10.38 7.76 48.65
C 0.63 0.83 0.94 10.54 9.72 64.49
D 0.70 0.86 0.95 13.54 11.91 78.63

4 A 0.32 0.52 0.84 1.60 3.02 85.96
B 0.35 0.58 0.86 1.73 3.64 94.16
C 0.38 0.62 0.86 1.87 4.10 100.00
D 0.33 0.55 0.86 1.63 3.33 93.23
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intensity of 10% on the normalized image. If the signal intensity of
10% is hard to be found due to high level for the noise, the size was
measured by using a trend line at the bottom of the peak. And the
coordinates of each region were found by identifying the point of
the highest signal within each region.

3. Results and discussion

Fig. 4 shows the images using the reconstruction algorithms of
standard FBP, GPU-based OSEM and SFPO. There were two types of
imaging acquisitions of PET (Fig. 4a and b) and of SPECT (Fig. 4c and
d). The four phantoms were configured to reflect the effect that
could occur when acquiring PET and SPECT images. In the phantom
1, the region of the radioisotopewith same diameter were arranged
at regular intervals. Phantom 2 had three regions with different
diameter along the X axis. Phantom 1 and 2 for PET image were
constructed to evaluate the effect of overlapping angles and the
relative small region discrimination. In the case of SPECT phantom,
in order to evaluate the effect of detector ration, small regions of
phantom 3 that could be difficult to distinguish along the X axis
were arranged, and the region of the radioisotope of the phantom 4
were divided into irregular intervals. The first column at the left in
Fig. 4 shows the original shape of the phantom including the re-
gions of the radioisotope for imaging. There were three or four
radioisotope uptake regions labeled as A, B C and D (except Fig. 4b)
and displayed in spherical patterns in the phantoms. The second
column indicated the reconstructed images using the standard FBP
reconstruction algorithm. In the cases of Fig. 4c and d, the streak
artifact was also observed in the image using the standard FBP
reconstruction algorithm. These artifacts were due to the lack of
sufficient projection numbers [1,2]. If the projection number was
insufficient to reconstruct images with the standard FBP algorithm,
a streak artifact could be resulted as the limitation of the standard
FBP reconstruction algorithm. The third column shows the recon-
structed images using the reconstruction algorithm of the GPU-
based OSEM. One of the advantages of the OSEM algorithm is its
ability the for image reconstructionwith fewer projections [14e16].
The sinogram used in this study was in purpose to provide an
insufficient projection number to reconstruct the images. None-
theless, the images constructed by using the GPU-based OSEM
demonstrated very clear signal regions with low noise levels for the
different radioisotope configuration, because this reconstruction
algorithm was based on the equation of probability distribution to
reduce the noise level [19,20]. However, when there was a little bit
weak signal (Fig. 4b and c), the true signal could not be resolved by
OSEM. The degradation process during the iteration was due to the
low probability of signal distribution. Additionally, the size of the
reconstructed signal region was observed being smaller than the
actual size of the radioisotope region. Lastly, the reconstructed
images using the SFPO were demonstrated at last column of Fig. 4.
Overall image shows the clearness of the signal intensity, the
sharpness of the signal edge, and dramatically low level for the
noise. In the PET image (phantom 1, 2), the edge of the signal region
was clearly distinguished overall, however a slight distortion
occurred in the SPECT image (phantom 3, 4). This result may
indicate that the radioisotope region is overfitting. This study has
limitations that make it difficult to calculate theoretical values such
as standardized uptake value (SUV). This phenomenon is assumed
to be overfitting the center portion of the radioisotope region.
Therefore, experimental verification using phantom having theo-
retical value such as SUV or reference value is necessary to over-
come this limitation in our study.

Table 1 shows the results for the contrast and SNR as a type of
the reconstruction algorithm on each region as shown in Fig. 4. In
order to show simply the difference of SNR according to
reconstruction algorithm, the all of values for SNR in Table 1 were
normalized by using the maximum value of the SNR in this table.
Hence, the highest SNRwill be demonstrated as 100. Because of the
noise generated by the standard FBP algorithm, the contrast in-
creases from 1.17 to 2.63 times and the SNR increases from 5.75 to
57.20 times as observed from the case of SFPO. When the results of
OSEM are compared to those of the SFPO, the intensity of the noise
region on the OSEM profile was not much different than that of the
SFPO. The contrast increased from 1.09 to 2.65 times. However,
because the signal intensity of the OSEM decreased, the results of
SNR for the SFPO increased from 1.53 to 28.46 times. When the
SFPO is compared with other two methods, the contrast and SNR
were improved overall. Especially, it can be seen that the difference
of the contrast was remarkable at the results in the phantom 4. In
the case of SNR, the values in the result for the standard FBP re-
ported relatively low level because it didn’t perform any image
denoising processes. In addition, the difference of the SNR between
for SFPO and for other methods is noticeable at the results for the
phantom 3 and 4.

Fig. 5 shows the image profiles measured vertically and hori-
zontally from all images as reconstructed by standard FBP, GPU-
based OSEM and the SFPO of using the same sigmoidal profile
function. The trend of standard FBP images shows high intensity at
the signal regions and even high level for the noise. Moreover, the
trend regarding the high level for the noise is remarkably demon-
strated in Fig. 5e and f, where the noise level is over 20%. The
representative strong point of OSEM is the low noise in the NM
image. However, the weak intensity for the true signal can be
suppressed with the distribution probability [35]. This trend is
noticeable at the 60th pixel in Fig. 5c and at the 35th pixel in Fig. 5d.
Thus, the difference of level between the signal and noise is only
10e20%. The peak of the signal region, on the image profile ac-
quired using standard FBP and GPU-based OSEM image, are rela-
tively narrow in signal peak. The boundary area between the signal
and noise regions was smooth. Moreover, the higher intensity
shows the thinner peak shape. From the images as obtained from
the SFPO, it shows the high intensity for the signal and low level for
the noise as the advantages of the reconstruction algorithm. Nor-
mally, the noise level on SPECT image is higher than that of PET



Fig. 5. The extracted image profiles from the images in Fig. 4 a and b show the vertical
and horizontal images profiles including 2 regions for the phantom 1. c and d show the
image profiles for the phantom 2 and the phantom 3, respectively. e and f show the
vertical and horizontal images profiles including 2 regions for the phantom 4. The
black line including square marker is the image profile for the standard FBP. The red
line including circle marker is the image profiles for the GPU-based OSEM. The blue
line is the image profiles for the SFPO. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

Table 2
Full width half maximum (FWHM) for each peak on the profiles, and the number of
the pixels for the penumbra range (from 20% to 80%).

FWHM (cm) Number of pixels for
penumbra range (20%
e80%; Pixel: 1.95 mm)

GPU-based SFPO GPU-based SFPO

Phantom Region FBP OSEM FBP OSEM

1 A 1.30 1.18 2.55 4 4 1
B 1.25 1.10 2.32 5 4 2
C 1.35 1.10 2.54 4 4 2
D 1.19 1.08 2.52 6 5 2

2 A 1.14 1.07 1.89 5 5 2
B 1.21 1.21 3.41 5 4 2
C 0.94 0.91 0.96 4 3 1

3 A 0.69 0.78 0.96 3 3 1
B 0.68 0.63 0.72 3 4 2
C 0.65 0.65 0.81 4 4 2
D 0.66 0.61 0.83 4 4 2

4 A 1.21 1.08 2.52 4 3 2
B 1.19 1.11 2.67 4 3 1
C 1.32 1.21 2.74 4 3 1
D 1.22 1.10 2.50 5 3 2
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image due to streak artifact by the back-projection when the
number of projections is low. Moreover, because Fig. 5e and f shows
the radioisotope regions of a little bit large size than the regions in
Fig. 5d, the more correct deposition events for the true signal are
required to show the difference of the almost same level between
the signal level and the noise level with case in Fig. 5d. For this
reason, the noise levels in Fig. 5e and f shows the higher than other
cases. Especially, the SNR is improved by distinguishing the signal
from the SPECT image well, which is consistent with the result in
Table 1.

Table 2 shows the results for both the FWHM and the number of
pixels for the penumbra. The results in case of SFPO show the
highest values from all cases. On the other hand, although the
FWHMs for standard FBP and for GPU-based OSEM have same
trend each other, somewhat low FWHMs were reported. In addi-
tion, the lowest number of the pixels for the penumbra was
measured from all cases for the SFPO. The highest number of pixels
was 6 from case of the standard FBP, it means that the range of the
penumbra was maximum 11.7 mm. The low FWHM and the high
number of the pixels for the penumbra lead the large degree of the
dispersion. It means that the shape of the signal peak is vast
different with the ideal pattern of the signal.

Table 3 presents the results of the measurement for the size and
the coordinate of each region on the reconstructed images. Overall
trend of the measured size is almost same with the trend of the
actual size. Some cases from even case of the SFPO reported the
over size. Although the over size from the case of standard FBP is
originated from the high noise level as well as the broad penumbra,
the over size from the case of SFPO is induced by the overfitting for
the optimization. The maximum difference of the size between the
actual size and the measured size was reported as 1.14 cm. The
minimum size was 0.08 cm. The start point of the coordinate on the
image was an edge for the top of left side at the image. Although
there is very little difference among the coordinate according to the
method of the reconstruction, the maximum difference of the
number of pixels was 6.

There have been a lot of studies to develop the algorithm for the
image reconstruction. Moreover, some researchers have tried to
Table 3
Sizes of each region on the reconstructed images and the coordinates of the highest
signal intensity within each region on the reconstructed images. The range of size
was defined as the distance between the former point of 10% and the latter point of
10% on the signal peak.

Size of regions (<10%;
cm)

Average coordinate for regions
(210 by 210 matrix)

GPU-based SFPO GPU-based SFPO

Phantom Region FBP OSEM FBP OSEM

1 A 3.11 2.73 2.92 78,107 78,108 80,105
B 3.11 2.92 2.92 104,81 106,81 106,78
C 2.92 2.73 3.11 130,108 134,108 133,105
D 3.11 2.92 2.92 104,134 108,135 106,132

2 A 2.53 2.14 2.53 85,101 82,105 84,107
B 3.31 3.50 3.89 105,101 103,105 104,107
C 1.75 1.56 1.36 122,101 123,105 124,107

3 A 1.95 1.95 2.14 104,103 105,105 105,106
B 1.95 2.14 1.36 116,104 119,105 119,106
C 1.56 1.95 1.75 128,103 132,105 132,106
D 1.75 1.95 2.14 140,103 145,105 145,106

4 A 3.11 2.92 2.92 77,105 79,107 78,105
B 3.30 3.11 2.92 105,84 106,87 106,86
C 2.92 2.92 3.11 121,106 122,109 121,107
D 3.11 2.92 3.11 104,139 105,140 104,138
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apply the deep learning to the reconstruction of the images which
has the improved quality than the performance of the image using
the conventional reconstruction methods. There is a representative
study to show similar results with the results in this study. Ida et al.
progressed the deep learning based PET image reconstruction using
a deep encoder-decoder [36]. They used 2D images of 98,000, and
deep neural network of U-net type to acquire the PET image. When
the results in this study is compared with that of above study, there
are some representative differences. First, the proposed method for
imaging in this study does not be based on the technique using the
machine learning or the deep learning. The optimization skill is
used to change the profile ideally. Second, the proposed method in
this study can cover the SPECT image reconstruction as well as the
PET image reconstruction. Because this method has approached
forward 1D profiles, not the image. Third, there is a difference of
number of the images for learning (or reference). In this process,
some strong and weak points can be reported on the comparison.
For the strong points, the image reconstruction timewas very short
(<1 s) for all of cases. Moreover, the high computing power does not
be required, such as for the deep learning. Because there is no heavy
computation by comparing with the conventional reconstruction,
the required time for the image reconstruction was extremely
short. And we used only very small number of images for the
reference. This number cannot be used to even machine learning.
However, the better image quality was shown. Lastly, this method
has been proposed to cover the image reconstruction for both the
SPECT and the PET. Obviously, the image reconstruction of the PET
is different with image reconstruction of the SPECT. Even the image
reconstruction using the deep learning should be considered as the
different construction for the design of the algorithm. However,
because the method of profile optimization in this study does not
recognize the signal as the 2D image, it does not be influenced from
the type of the imaging module. On the other hand, the proposed
method in this study has clear weak points. Firstly, the parameters
were found manually from the reference images. Surely this stage
can be replaced by the deep learning. It looks like a stage of
‘learning’ for the deep learning. However, this process is the
providing a ‘knowledge’ rather than the ‘learning’. In this study, we
needed human’s judgement for the signal using only small cases
rather than the machine’s judgement using big data. It does not
require the heavy scale data to solve the problem. There is another
weak point by connecting above weak point. Basically, because the
proposed method is based on the computational algorithm, not the
machine learning, the formulaic results should be acquired. How-
ever, these results can be drastically changed according to the
quality of the reference. It means that if the human’s judgement is
continuously wrong, the quality of image will be extremely
different. However, this weak point can be covered by some
experts.
4. Conclusions

In this study, we have acquired the NM image using sigmoid
function profile optimization which is a different method with the
conventional type for the image reconstruction. By comparing with
other reconstruction methods such as standard FBP and GPU-based
OSEM, the SFPO demonstrated that better quality for the recon-
structed image with the results of the quantitative analysis.
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