DOI QR코드

DOI QR Code

Investigations on borate glasses within SBC-Bx system for gamma-ray shielding applications

  • Rammah, Y.S. (Physics Department, Menoufia University) ;
  • Tekin, H.O. (Department of Medical Diagnostic Imaging - College of Health Sciences University of Sharjah) ;
  • Sriwunkum, C. (Department of Physics, Ubon Ratchathani University) ;
  • Olarinoye, I. (Department of Physics, Federal University of Technology) ;
  • Alalawi, Amani (Department of Physics, Umm AL-Qura University) ;
  • Al-Buriahi, M.S. (Department of Physics, Sakarya University) ;
  • Nutaro, T. (Department of Physics, Ubon Ratchathani University) ;
  • Tonguc, Baris T. (Department of Physics, Sakarya University)
  • 투고 : 2019.09.07
  • 심사 : 2020.06.30
  • 발행 : 2021.01.25

초록

This paper examines gamma-ray shielding properties of SBC-Bx glass system with the chemical composition of 40SiO2-10B2O3-xBaO-(45-x)CaO- yZnO- zMgO (where x = 0, 10, 20, 30, and 35 mol% and y = z = 6 mol%). Mass attenuation coefficient (µ/ρ) which is an essential parameter to study gamma-ray shielding properties was obtained in the photon energy range of 0.015-15 MeV using PHITS Monte Carlo code for the proposed glasses. The obtained results were compared with those calculated by WinXCOM program. Both the values of PHITS code and WinXCOM program were observed in very good agreement. The (µ/ρ values were then used to derive mean free path (MFP), electron density (Neff), effective atomic number (Zeff), and half value layer (HVL) for all the glasses involved. Additionally, G-P method was employed to estimate exposure buildup factor (EBF) for each glass in the energy range of 0.015-15 MeV up to penetration depths of 40 mfp. The results reveal that gamma-ray shielding effectiveness of the SBC-Bx glasses evolves with increasing BaO content in the glass sample. Such that SBC-B35 glass has superior shielding capacity against gamma-rays among the studied glasses. Gamma-ray shielding properties of SBC-B35 glass were compared with different conventional shielding materials, commercial glasses, and newly developed HMO glasse. Therefore, the investigated glasses have potential uses in gamma shielding applications.

키워드

참고문헌

  1. R. Baskar, K.A. Lee, R. Yeo, K.-W. Yeoh, Cancer and radiation therapy: current advances and future directions, Int. J. Med. Sci. 9 (2012) 193. https://doi.org/10.7150/ijms.3635
  2. E. Kavaz, N. Ekinci, H. Tekin, M. Sayyed, B. Aygun, U. Peris, anoglu, Estimation of gamma radiation shielding qualification of newly developed glasses by using winxcom and mcnpx code, Prog. Nucl. Energy 115 (2019) 12-20. https://doi.org/10.1016/j.pnucene.2019.03.029
  3. M.S. Al-Buriahi, B.T. Tonguc, Study on gamma-ray buildup factors of bismuth borate glasses, Appl. Phys. A 125 (2019) 482. https://doi.org/10.1007/s00339-019-2777-4
  4. M. Al-Buriahi, Y. Alajerami, A. Abouhaswa, A. Alalawi, T. Nutaro, B. Tonguc, Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses, J. Non-Cryst. Solids 544 (2020), 120171. https://doi.org/10.1016/j.jnoncrysol.2020.120171
  5. W. Guo-hui, H. Man-li, C. Fan-chao, F. Jun-dong, D. Yao-dong, Enhancement of flame retardancy and radiation shielding properties of ethylene vinyl acetate based radiation shielding composites by eb irradiation, Prog. Nucl. Energy 112 (2019) 225-232. https://doi.org/10.1016/j.pnucene.2019.01.001
  6. M. Al-Buriahi, V. Singh, Comparison of shielding properties of various marble concretes using geant4 simulation and experimental data, Journal of the Australian Ceramic Society (2020) 1-7.
  7. M.K.A. Roslan, M. Ismail, A.B.H. Kueh, M.R.M. Zin, High-density concrete: exploring ferro boron effects in neutron and gamma radiation shielding, Construct. Build. Mater. 215 (2019) 718-725. https://doi.org/10.1016/j.conbuildmat.2019.04.105
  8. S.S. Obaid, M. Sayyed, D. Gaikwad, H. Tekin, Y. Elmahroug, P. Pawar, Photon attenuation coefficients of different rock samples using mcnpx, geant4 simulation codes and experimental results: a comparison study, Radiat. Eff. Defect Solid 173 (2018) 900-914. https://doi.org/10.1080/10420150.2018.1505890
  9. E.-S.A. Waly, M.A. Bourham, Comparative study of different concrete composition as gamma-ray shielding materials, Ann. Nucl. Energy 85 (2015) 306-310. https://doi.org/10.1016/j.anucene.2015.05.011
  10. S.S. Obaid, M. Sayyed, D. Gaikwad, P.P. Pawar, Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications, Radiat. Phys. Chem. 148 (2018a) 86-94. https://doi.org/10.1016/j.radphyschem.2018.02.026
  11. S.S. Obaid, D.K. Gaikwad, P.P. Pawar, Determination of gamma ray shielding parameters of rocks and concrete, Radiat. Phys. Chem. 144 (2018b) 356-360. https://doi.org/10.1016/j.radphyschem.2017.09.022
  12. D. Yilmaz, B. Aktas, , A. Calik, O. Aytar, Boronizing effect on the radiation shielding properties of hardox 450 and hardox hituf steels, Radiat. Phys. Chem. 161 (2019) 55-59. https://doi.org/10.1016/j.radphyschem.2019.04.019
  13. T. Shams, M. Eftekhar, A. Shirani, Investigation of gamma radiation attenuation in heavy concrete shields containing hematite and barite aggregates in multi-layered and mixed forms, Construct. Build. Mater. 182 (2018) 35-42. https://doi.org/10.1016/j.conbuildmat.2018.06.032
  14. M. Kurudirek, N. Chutithanapanon, R. Laopaiboon, C. Yenchai, C. Bootjomchai, Effect of bi2o3 on gamma ray shielding and structural properties of borosilicate glasses recycled from high pressure sodium lamp glass, J. Alloys Compd. 745 (2018) 355-364. https://doi.org/10.1016/j.jallcom.2018.02.158
  15. A. Kumar, D. Gaikwad, S.S. Obaid, H. Tekin, O. Agar, M. Sayyed, Experimental studies and Monte Carlo simulations on gamma ray shielding competence of (30+ x) pbo10wo3 10na2o- 10mgo-(40-x) b2o3 glasses, Prog. Nucl. Energy 119 (2020), 103047. https://doi.org/10.1016/j.pnucene.2019.103047
  16. D. Gaikwad, M. Sayyed, S. Botewad, S.S. Obaid, Z. Khattari, U. Gawai, F. Afaneh, M. Shirshat, P. Pawar, Physical, structural, optical investigation and shielding featuresof tungsten bismuth tellurite based glasses, J. Non-Cryst. Solids 503 (2019) 158-168. https://doi.org/10.1016/j.jnoncrysol.2018.09.038
  17. S. Souto, M. Massot, M. Balkanski, D. Royer, Density and ultrasonic velocities in fast ionic conducting borate glasses, Mater. Sci. Eng., B 64 (1999) 33-38. https://doi.org/10.1016/S0921-5107(99)00150-6
  18. M. Al-Buriahi, A. Abouhaswa, H. Tekin, C. Sriwunkum, F. El-Agawany, T. Nutaro, E. Kavaz, Y. Rammah, Structure, optical, gamma-ray and neutron shielding properties of nio doped b2o3-baco3-li2o3 glass systems, Ceram. Int. 46 (2020) 1711-1721. https://doi.org/10.1016/j.ceramint.2019.09.144
  19. M. Al-Buriahi, Y. Rammah, Investigation of the physical properties and gamma-ray shielding capability of borate glasses containing pbo, al 2 o 3 and na 2 o, Appl. Phys. A 125 (2019) 717. https://doi.org/10.1007/s00339-019-3020-z
  20. M. Al-Buriahi, K. Mann, Radiation shielding investigations for selected tellurite-based glasses belonging to the tnw system, Mater. Res. Express 6 (2019), 105206. https://doi.org/10.1088/2053-1591/ab3f85
  21. M. Sayyed, H. Tekin, O. Agar, Gamma photon and neutron attenuation properties of mgo-bao-b2o3-teo2-cr2o3 glasses: the role of teo2, Radiat. Phys. Chem. 163 (2019) 58-66. https://doi.org/10.1016/j.radphyschem.2019.05.012
  22. E. Kavaz, H. Tekin, N.Y. Yorgun, O. Ozdemir, M. Sayyed, Structural and nuclear radiation shielding properties of bauxite ore doped lithium borate glasses: experimental and Monte Carlo study, Radiat. Phys. Chem. 162 (2019) 187-193. https://doi.org/10.1016/j.radphyschem.2019.05.019
  23. M. Sayyed, K.M. Kaky, M. Mhareb, A.H. Abdalsalam, N. Almousa, G. Shkoukani, M.A. Bourham, Borate multicomponent of bismuth rich glasses for gamma radiation shielding application, Radiat. Phys. Chem. 161 (2019) 77-82. https://doi.org/10.1016/j.radphyschem.2019.04.005
  24. P. Vani, G. Vinitha, M. Sayyed, B. Elbashir, N. Manikandan, Investigation on structural, optical, thermal and gamma photon shielding properties of zinc and barium doped fluorotellurite glasses, J. Non-Cryst. Solids 511 (2019) 194-200. https://doi.org/10.1016/j.jnoncrysol.2019.02.005
  25. H. Tekin, E. Kavaz, A. Papachristodoulou, M. Kamislioglu, O. Agar, E.A. Guclu, O. Kilicoglu, M. Sayyed, Characterization of sio2-pbo-cdo-ga2o3 glasses for comprehensive nuclear shielding performance: alpha, proton, gamma, neutron radiation, Ceram. Int. 45 (2019) 19206-19222. https://doi.org/10.1016/j.ceramint.2019.06.168
  26. O. Agar, M. Sayyed, H. Tekin, K.M. Kaky, S. Baki, I. Kityk, An investigation on shielding properties of bao, moo3 and p2o5 based glasses using mcnpx code, Results in Physics 12 (2019) 629-634. https://doi.org/10.1016/j.rinp.2018.12.003
  27. M. Sayyed, A. Kumar, H. Tekin, R. Kaur, M. Singh, O. Agar, M.U. Khandaker, Evaluation of gamma-ray and neutron shielding features of heavy metals doped bi2o3-bao-na2o-mgo-b2o3 glass systems, Prog. Nucl. Energy 118 (2020), 103118. https://doi.org/10.1016/j.pnucene.2019.103118
  28. V.P. Singh, M. Medhat, S. Shirmardi, Comparative studies on shielding properties of some steel alloys using geant4, mcnp, winxcom and experimental results, Radiat. Phys. Chem. 106 (2015a) 255-260. https://doi.org/10.1016/j.radphyschem.2014.07.002
  29. V. Singh, S. Shirmardi, M. Medhat, N. Badiger, Determination of mass attenuation coefficient for some polymers using Monte Carlo simulation, Vacuum 119 (2015b) 284-288. https://doi.org/10.1016/j.vacuum.2015.06.006
  30. A. Askin, M. Sayyed, A. Sharma, M. Dal, R. El-Mallawany, M. Kacal, Investigation ofthe gamma ray shielding parameters of (100-x)[0.5 li2o-0.1 b2o3-0.4 p2o5]-xteo2 glasses using geant4 and fluka codes, J. Non-Cryst. Solids 521 (2019), 119489. https://doi.org/10.1016/j.jnoncrysol.2019.119489
  31. S.A. Issa, Y.B. Saddeek, M. Sayyed, H. Tekin, O. Kilicoglu, Radiation shielding features using mcnpx code and mechanical properties of the pbona2ob2o3-caoal2o3sio2 glass systems, Compos. B Eng. 167 (2019) 231-240. https://doi.org/10.1016/j.compositesb.2018.12.029
  32. I. Mahmoud, S.A. Issa, Y.B. Saddeek, H. Tekin, O. Kilicoglu, T. Alharbi, M. Sayyed, T. Erguzel, R. Elsaman, Gamma, neutron shielding and mechanical parameters for lead vanadate glasses, Ceram. Int. 45 (2019) 14058-14072. https://doi.org/10.1016/j.ceramint.2019.04.105
  33. Y. Rammah, M. Al-Buriahi, A. Abouhaswa, B2o3-baco3-li2o3 glass system doped with co3o4: structure, optical, and radiation shielding properties, Phys. B Condens. Matter 576 (2020), 411717. https://doi.org/10.1016/j.physb.2019.411717
  34. M.S. Al-Buriahi, B.T. Tonguc, Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography, Radiat. Phys. Chem. 166 (2020), 108507. https://doi.org/10.1016/j.radphyschem.2019.108507
  35. E.-S.A. Waly, M.A. Fusco, M.A. Bourham, Gamma-ray mass attenuation coefficient and half value layer factor of some oxide glass shielding materials, Ann. Nucl. Energy 96 (2016) 26-30. https://doi.org/10.1016/j.anucene.2016.05.028
  36. A. Shimizu, Calculation of Gamma-Ray Buildup Factors up to Depths of 100 Mfp by the Method of Invariant Embedding. (i) Analysis of accuracy and comparison with other data, J. Nucl. Sci. Technol. 39 (2002) 477-486. https://doi.org/10.1080/18811248.2002.9715225
  37. G. Lakshminarayana, I. Kebaili, M. Dong, M. Al-Buriahi, A. Dahshan, I. Kityk, D.-E. Lee, J. Yoon, T. Park, Estimation of gamma-rays, and fast and the thermal neutrons attenuation characteristics for bismuth tellurite and bismuth borotellurite glass systems, J. Mater. Sci. 55 (2020) 5750-5771. https://doi.org/10.1007/s10853-020-04446-4
  38. M.S. Al-Buriahi, V. Singh, H. Arslan, V. Awasarmol, B.T. Tonguc, Gamma-ray attenuation properties of some nlo materials: potential use in dosimetry, Radiat. Environ. Biophys. 59 (2020a) 145-150. https://doi.org/10.1007/s00411-019-00824-y
  39. M. Al-Buriahi, C. Sriwunkum, H. Arslan, B.T. Tonguc, M.A. Bourham, Investigation of barium borate glasses for radiation shielding applications, Appl. Phys. A 126 (2020b) 1-9. https://doi.org/10.1007/s00339-019-3176-6
  40. I. Han, L. Demir, Studies on effective atomic numbers, electron densities from mass attenuation coefficients in tixco1- x and coxcu1- x alloys, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 267 (2009) 3505-3510. https://doi.org/10.1016/j.nimb.2009.08.022
  41. M. Kurudirek, Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications, Radiat. Phys. Chem. 102 (2014) 139-146. https://doi.org/10.1016/j.radphyschem.2014.04.033
  42. M. Al-Buriahi, H. Arslan, H. Tekin, V. Singh, B.T. Tonguc, Moo3-teo2 glass system for gamma ray shielding applications, Mater. Res. Express 7 (2020), 025202. https://doi.org/10.1088/2053-1591/ab6db4
  43. S. Manohara, S. Hanagodimath, L. Gerward, S. Subhranshu, Energy-absorption buildup factors of some fluorides and sulfates: thermoluminescent dosimetric materials, Mater. Today: Proceedings 10 (2019) 20-24. https://doi.org/10.1016/j.matpr.2019.02.183
  44. P. Kaur, K. Singh, M. Kurudirek, S. Thakur, Study of environment friendly bismuth incorporated lithium borate glass system for structural, gamma-ray and fast neutron shielding properties, Spectrochim. Acta Mol. Biomol. Spectrosc. 223 (2019), https://doi.org/10.1016/j.saa.2019.117309, 117309.
  45. M.S. Al-Buriahi, H. Arslan, B.T. Tonguc, Investigation of photon energy absorption properties for some biomolecules, Nucl. Sci. Tech. 30 (2019) 103. https://doi.org/10.1007/s41365-019-0636-9
  46. M. Kurudirek, Heavy metal borate glasses: potential use for radiation shielding, J. Alloys Compd. 727 (2017) 1227-1236. https://doi.org/10.1016/j.jallcom.2017.08.237
  47. A. Abouhaswa, M. Mhareb, A. Alalawi, M. Al-Buriahi, Physical, structural, optical, and radiation shielding properties of b2o3-20bi2o3-20na2o2-sb2o3 glasses: role of sb2o3, J. Non-Cryst. Solids 543 (2020), 120130. https://doi.org/10.1016/j.jnoncrysol.2020.120130
  48. ANSI/ANS-6.4.3, Gamma Ray Attenuation Coefficient and Buildup Factors for Engineering Materials, 1991.
  49. T. Sato, Y. Iwamoto, S. Hashimoto, T. Ogawa, T. Furuta, S.-i. Abe, T. Kai, P.-E. Tsai, N. Matsuda, H. Iwase, et al., Features of particle and heavy ion transport code system (phits) version 3.02, J. Nucl. Sci. Technol. 55 (2018) 684-690. https://doi.org/10.1080/00223131.2017.1419890
  50. A. Kumar, Gamma ray shielding properties of pbo-li2o-b2o3 glasses, Radiat. Phys. Chem. 136 (2017) 50-53. https://doi.org/10.1016/j.radphyschem.2017.03.023
  51. M.S. Al-Buriahi, B.T. Tonguc, Mass attenuation coefficients, effective atomic numbers and electron densities of some contrast agents for computed tomography, Radiat. Phys. Chem. 166 (2020), 108507. https://doi.org/10.1016/j.radphyschem.2019.108507
  52. M.S. Al-ahi, H. Arslan, B.T. Tonguc, et al., Mass attenuation coefficients, water and tissue equivalence properties of some tissues by geant4, xcom and experimental data, Indian J. Pure Appl. Phys. 57 (2019) 433-437.
  53. H.-X. Shi, B.-X. Chen, T.-Z. Li, D. Yun, Precise Monte Carlo simulation of gamma-ray response functions for an nai (tl) detector, Appl. Radiat. Isot. 57 (2002) 517-524. https://doi.org/10.1016/S0969-8043(02)00140-9
  54. M.J. Berger, J. Hubbell, XCOM: Photon Cross Sections on a Personal Computer, Technical Report, National Bureau of Standards, Center for Radiation Research, Washington, DC (USA), 1987.
  55. M.S. Al-Buriahi, H. Arslan, B.T. Tonguc, Investigation of photon energy absorption properties for some biomolecules, Nucl. Sci. Tech. 30 (2019) 103. https://doi.org/10.1007/s41365-019-0636-9
  56. P. Kaur, K. Singh, S. Thakur, P. Singh, B. Bajwa, Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties, Spectrochim. Acta Mol. Biomol. Spectrosc. 206 (2019) 367-377. https://doi.org/10.1016/j.saa.2018.08.038
  57. P. Fuochi, U. Corda, M. Lavalle, A. Kovacs, M. Baranyai, A. Mejri, K. Farah, Dosimetric properties of gammaand electron-irradiated commercial window glasses, Nukleonika 54 (2009) 39-43.
  58. I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy 24 (1997) 1389-1401. https://doi.org/10.1016/S0306-4549(97)00003-0
  59. Y. Elmahroug, M. Almatari, M. Sayyed, M. Dong, H. Tekin, Investigation of radiation shielding properties for bi2o3-v2o5-teo2 glass system using mcnp5 code, J. Non-Cryst. Solids 499 (2018) 32-40. https://doi.org/10.1016/j.jnoncrysol.2018.07.008

피인용 문헌

  1. Influence of La2O3 content on the structural, mechanical, and radiation-shielding properties of sodium fluoro lead barium borate glasses vol.32, pp.4, 2021, https://doi.org/10.1007/s10854-020-05204-7
  2. Investigation of mechanical properties, photons, neutrons, and charged particles shielding characteristics of Bi2O3/B2O3/SiO2 glasses vol.127, pp.4, 2021, https://doi.org/10.1007/s00339-021-04365-4
  3. In-depth survey of nuclear radiation attenuation efficacies for high density bismuth lead borate glass system vol.23, 2021, https://doi.org/10.1016/j.rinp.2021.104030
  4. Synthesis, physical, optical, structural and radiation shielding characterization of borate glasses: A focus on the role of SrO/Al2O3 substitution vol.48, pp.2, 2021, https://doi.org/10.1016/j.ceramint.2021.09.301